deepfacelab中文网

 找回密码
 立即注册(仅限QQ邮箱)
查看: 621|回复: 14

deepfacelab框架迁移为pytorch的问题

[复制链接]

24

主题

165

帖子

1141

积分

初级丹圣

Rank: 8Rank: 8

积分
1141
 楼主| 发表于 2026-1-25 22:35:33 | 显示全部楼层 |阅读模式
星级打分
  • 1
  • 2
  • 3
  • 4
  • 5
平均分:NAN  参与人数:0  我的评分:未评
本帖最后由 day270010678 于 2026-1-25 22:41 编辑

我现在已经完全迁移完的项目是,提取脸部,遮罩训练,但是到了遮罩预训练阶段,我发现一个问题,就是deepfacelab的MPSharedList机制,按照我的初期设想是不重构多进程框架Subprocessor,而是在这个框架下重构,但是现在我发现一个问题,就是在数据集PackedFaceset.py中 我给返回的是PyTorch数据集对象,但是在SampleLoader.py中



  1.                 samples[sample_type] = MPSharedList(result)
  2.         elif    sample_type == SampleType.FACE_TEMPORAL_SORTED:
  3.                 result = SampleLoader.load (SampleType.FACE, samples_path)
  4.                 result = SampleLoader.upgradeToFaceTemporalSortedSamples(result)
  5.                 samples[sample_type] = MPSharedList(result)
复制代码
他按照原始的框架是调用列表,但是我这里返回的PyTorch数据集对象,这就导致一个问题,我在pytorch一致性的准则下,有两种解决办法,这里直接把pytorch转换为列表,另外一种是修改MPSharedList,让他支持pytorch对象,这是最中性的修改,但是我突然发现 似乎最完美的方法是PyTorch的DataLoader机制代替MPSharedList机制,这就涉及一个项目的重构了,这简直是重写deepfacelab啊,需要把DeepFaceLab的Subprocessor架构转为PyTorch DataLoader架构, 形成真正的pytorch一致性。但是这是个大项目,按照我拖拖拉拉的偶尔写写停停的时间,现在是假如不重构,我觉得没意思,但是重构吧,恐怕要很久,强迫症犯了。 不知道怎么好,现在都丫的因为这个问题,想不修改了,直接到这里就行了或者简单的重构后面的训练,合成,就不弄预训练了,这该死的完美主义。弄得都不想写了。


在这里我必须负责任的说一句,deepfacelab由于TensorFlow框架的缘故,导致我们很多性能不能发挥,所以迁移到pytorch是必须的,就简单的提取脸部来说,我测试,用原始的TensorFlow2.7提取162张图片,质量100的情况下耗费时间是二分钟多一点, 假如把ensorFlow升级到2.10+python3.10的话,耗时是 1分20秒, 假如框架迁移到pytorch后,耗时是40秒,这还是没有完全重构的情况下的数据对比, 我遮罩训练是260ms一次迭代。

写到这里 我来说说 显卡4000和5000,这个不要过多听别人吹牛,现有的不管那个框架都支持,只是性能发挥的问题,那问题来了,假如我迁移到pytorch后能不能完全发挥性能?答案是肯定的,因为现在最高的pytorch2.91也不能发挥完全性能,至于理由,懂的都懂,真要完全发挥必须用他的测试版加cu30或许好点。

评分

参与人数 2贡献 +2 收起 理由
lispmox + 1
gotoplay + 1

查看全部评分

回复

使用道具 举报

6

主题

256

帖子

2万

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
26651

荣誉会员勋章小有贡献勋章

发表于 5 天前 | 显示全部楼层
main9dog 发表于 2026-1-31 22:29
我覺得最需要的是手動上遮照這塊,全世界還沒有高手研究出來怎麼寫嗎?

每次搞這個搞超久....

xseg.jpg


回复 支持 1 反对 0

使用道具 举报

9

主题

73

帖子

4990

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
4990
发表于 2026-1-27 00:40:12 | 显示全部楼层
我之前花了很多时间用pytorch重构了整个DFL的工作流,后来发现对于个人玩家意义不大。现在的高分辨模型还是靠算力和数据堆上去的,在架构没有进步的前提下重写DFL也只是雕花了,投入的时间和精力成本不如多训练几天,冬天跑还能取暖。楼主既然如果有精力有算力也可以试试改进模型架构
回复 支持 反对

使用道具 举报

0

主题

1

帖子

100

积分

高级丹童

Rank: 2

积分
100
发表于 2026-1-27 10:56:32 | 显示全部楼层
巧了,我也在做,但是仅实现LIAE架构与训练步骤,还有面部相关工具
回复 支持 反对

使用道具 举报

24

主题

165

帖子

1141

积分

初级丹圣

Rank: 8Rank: 8

积分
1141
 楼主| 发表于 2026-1-27 16:43:25 | 显示全部楼层
lispmox 发表于 2026-1-27 00:40
我之前花了很多时间用pytorch重构了整个DFL的工作流,后来发现对于个人玩家意义不大。现在的高分辨模型还是 ...

别提了,昨天晚上心血来潮,重构了他整体框架, 今天调试,  调试了半天还是有错误,都懒得弄了。
  1. Loading XSeg model...
  2. === ON_INITIALIZE_OPTIONS CALLED ===
  3. self id: 2126717295248
  4. Press enter in 2 seconds to override model settings.=== ON_INITIALIZE CALLED ===
  5. self id: 2126717295248
  6. Using 3 segmented samples.
  7. === ONGETPREVIEW CALLED ===
  8. onGetPreview: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  9. onGetPreview: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  10. onGetPreview: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  11. === VIEW FUNCTION CALLED ===
  12. input_tensor id: 2127144431216, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  13. input_tensor min/max: 0.000000/1.000000
  14. input_tensor data sample: [1. 1. 1. 1. 1.]
  15. onGetPreview: I shape: (3, 256, 256, 3), M shape: (3, 256, 256, 3), IM shape: (3, 256, 256, 3)
  16. onGetPreview: I min/max: 0.000000/1.000000, M min/max: 0.000000/1.000000, IM min/max: 0.000000/0.999058
  17. process_samples called for src
  18. process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.976471
  19. === VIEW FUNCTION CALLED ===
  20. input_tensor id: 2127144431936, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  21. input_tensor min/max: 0.000000/0.976471
  22. input_tensor data sample: [0.22156863 0.21862745 0.23333333 0.24313726 0.22352941]
  23. process_samples called for dst
  24. process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.866667
  25. === VIEW FUNCTION CALLED ===
  26. input_tensor id: 2127144431936, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  27. input_tensor min/max: 0.000000/0.866667
  28. input_tensor data sample: [0.15294118 0.15294118 0.15294118 0.15294118 0.15294118]
  29. =================== Model Summary ===================
  30. ==                                                 ==
  31. ==             Model name: XSeg                    ==
  32. ==                                                 ==
  33. ==      Current iteration: 123                     ==
  34. ==                                                 ==
  35. ==----------------- Model Options -----------------==
  36. ==                                                 ==
  37. ==              face_type: wf                      ==
  38. ==               pretrain: False                   ==
  39. ==             batch_size: 4                       ==
  40. == pytorch_cuda_available: True                    ==
  41. ==        pytorch_version: 2.9.1+cu130             ==
  42. ==                                                 ==
  43. ==------------------ Running On -------------------==
  44. ==                                                 ==
  45. ==           Device index: 0                       ==
  46. ==                   Name: NVIDIA GeForce RTX 3050 ==
  47. ==                   VRAM: 6.00GB                  ==
  48. ==                                                 ==
  49. =====================================================
  50. Starting. Press "Enter" to stop training and save model.
  51. Time      Iter      Time/Iter   Loss Values...
  52. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  53. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  54. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  55. onTrainOneIter: total_pixels=196608, positive_pixels=63210, negative_pixels=133398, positive_ratio=0.321503
  56. === TRAIN FUNCTION CALLED ===
  57. input_tensor id: 2127144432944, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  58. target_tensor id: 2127144431792, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  59. input_tensor min/max: 0.000000/1.000000
  60. target_tensor min/max: 0.000000/1.000000
  61. input_tensor data sample: [0.12258932 0.12264245 0.12273288 0.12257486 0.12219308]
  62. target_tensor data sample: [0. 0. 0. 0. 0.]
  63.   pred_logits min/max: -26.082487/7.937037
  64.   pred_logits sample: [-1.2224133 -1.0619926 -1.3118495 -1.6369269 -2.51067  ]
  65.   target_tensor stats: total_pixels=196608, positive_pixels=63210, negative_pixels=133398, positive_ratio=0.321503
  66.   Total grad_norm: 9.716019e+00, avg: 1.104093e-01
  67.   Zero gradients: 15/88 (17.0%)
  68.   Loss: 0.263407
  69. === ONGETPREVIEW CALLED ===[0.2634]
  70. onGetPreview: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  71. onGetPreview: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  72. onGetPreview: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  73. === VIEW FUNCTION CALLED ===
  74. input_tensor id: 2127144431504, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  75. input_tensor min/max: 0.000000/1.000000
  76. input_tensor data sample: [1. 1. 1. 1. 1.]
  77. onGetPreview: I shape: (3, 256, 256, 3), M shape: (3, 256, 256, 3), IM shape: (3, 256, 256, 3)
  78. onGetPreview: I min/max: 0.000000/1.000000, M min/max: 0.000000/1.000000, IM min/max: 0.000000/0.998625
  79. process_samples called for src
  80. process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.976471
  81. === VIEW FUNCTION CALLED ===
  82. input_tensor id: 2127144431792, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  83. input_tensor min/max: 0.000000/0.976471
  84. input_tensor data sample: [0.22156863 0.21862745 0.23333333 0.24313726 0.22352941]
  85. process_samples called for dst
  86. process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.866667
  87. === VIEW FUNCTION CALLED ===
  88. input_tensor id: 2127144431792, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  89. input_tensor min/max: 0.000000/0.866667
  90. input_tensor data sample: [0.15294118 0.15294118 0.15294118 0.15294118 0.15294118]
  91. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.011410/1.000000
  92. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  93. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  94. onTrainOneIter: total_pixels=196608, positive_pixels=68769, negative_pixels=127839, positive_ratio=0.349777
  95. === TRAIN FUNCTION CALLED ===
  96. input_tensor id: 2127144535392, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  97. target_tensor id: 2127144534384, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  98. input_tensor min/max: 0.011410/1.000000
  99. target_tensor min/max: 0.000000/1.000000
  100. input_tensor data sample: [1. 1. 1. 1. 1.]
  101. target_tensor data sample: [0. 0. 0. 0. 0.]
  102.   pred_logits min/max: -21.311359/5.924034
  103.   pred_logits sample: [-7.4202623  1.7539611 -4.432145  -5.049247  -5.240492 ]
  104.   target_tensor stats: total_pixels=196608, positive_pixels=68769, negative_pixels=127839, positive_ratio=0.349777
  105.   Total grad_norm: 6.423314e+00, avg: 7.299221e-02
  106.   Zero gradients: 16/88 (18.2%)
  107.   Loss: 0.227651
  108. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  109. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  110. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  111. onTrainOneIter: total_pixels=196608, positive_pixels=64904, negative_pixels=131704, positive_ratio=0.330119
  112. === TRAIN FUNCTION CALLED ===
  113. input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  114. target_tensor id: 2127144534240, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  115. input_tensor min/max: 0.000000/1.000000
  116. target_tensor min/max: 0.000000/1.000000
  117. input_tensor data sample: [0.3203014  0.32011262 0.31642017 0.29747993 0.28607503]
  118. target_tensor data sample: [0. 0. 0. 0. 0.]
  119.   pred_logits min/max: -21.281088/8.497002
  120.   pred_logits sample: [-3.0622835 -1.7201625 -1.9710674 -3.2355402 -3.0791936]
  121.   target_tensor stats: total_pixels=196608, positive_pixels=64904, negative_pixels=131704, positive_ratio=0.330119
  122.   Total grad_norm: 3.317015e+01, avg: 3.769335e-01
  123.   Zero gradients: 14/88 (15.9%)
  124.   Loss: 0.469815
  125. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  126. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  127. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  128. onTrainOneIter: total_pixels=196608, positive_pixels=62948, negative_pixels=133660, positive_ratio=0.320170
  129. === TRAIN FUNCTION CALLED ===
  130. input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  131. target_tensor id: 2127117536864, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  132. input_tensor min/max: 0.000000/1.000000
  133. target_tensor min/max: 0.000000/1.000000
  134. input_tensor data sample: [0.29013884 0.28985968 0.2895732  0.28930765 0.28898674]
  135. target_tensor data sample: [0. 0. 0. 0. 0.]
  136.   pred_logits min/max: -20.726892/7.293363
  137.   pred_logits sample: [-2.4902973 -1.8111492 -1.4735903 -2.8097928 -3.127867 ]
  138.   target_tensor stats: total_pixels=196608, positive_pixels=62948, negative_pixels=133660, positive_ratio=0.320170
  139.   Total grad_norm: 1.098472e+01, avg: 1.248264e-01
  140.   Zero gradients: 16/88 (18.2%)
  141.   Loss: 0.263270
  142. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.990774
  143. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  144. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  145. onTrainOneIter: total_pixels=196608, positive_pixels=65615, negative_pixels=130993, positive_ratio=0.333735
  146. === TRAIN FUNCTION CALLED ===
  147. input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  148. target_tensor id: 2127117539888, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  149. input_tensor min/max: 0.000000/0.990774
  150. target_tensor min/max: 0.000000/1.000000
  151. input_tensor data sample: [0.06192069 0.06084388 0.05979334 0.05928424 0.05830612]
  152. target_tensor data sample: [0. 0. 0. 0. 0.]
  153.   pred_logits min/max: -23.783371/7.119821
  154.   pred_logits sample: [-2.8762927  -1.6264055  -0.98988074 -2.3853555  -2.479313  ]
  155.   target_tensor stats: total_pixels=196608, positive_pixels=65615, negative_pixels=130993, positive_ratio=0.333735
  156.   Total grad_norm: 1.191719e+01, avg: 1.354226e-01
  157.   Zero gradients: 16/88 (18.2%)
  158.   Loss: 0.296378
  159. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  160. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  161. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  162. onTrainOneIter: total_pixels=196608, positive_pixels=59914, negative_pixels=136694, positive_ratio=0.304738
  163. === TRAIN FUNCTION CALLED ===
  164. input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  165. target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  166. input_tensor min/max: 0.000000/1.000000
  167. target_tensor min/max: 0.000000/1.000000
  168. input_tensor data sample: [0.42745098 0.42745098 0.43529412 0.38039216 0.46666667]
  169. target_tensor data sample: [0. 0. 0. 0. 0.]
  170.   pred_logits min/max: -22.802631/9.289175
  171.   pred_logits sample: [-3.4657896 -1.158008  -1.7567021 -2.7105498 -4.217543 ]
  172.   target_tensor stats: total_pixels=196608, positive_pixels=59914, negative_pixels=136694, positive_ratio=0.304738
  173.   Total grad_norm: 1.422873e+01, avg: 1.616901e-01
  174.   Zero gradients: 15/88 (17.0%)
  175.   Loss: 0.382004
  176. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  177. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  178. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  179. onTrainOneIter: total_pixels=196608, positive_pixels=60038, negative_pixels=136570, positive_ratio=0.305369
  180. === TRAIN FUNCTION CALLED ===
  181. input_tensor id: 2127117537008, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  182. target_tensor id: 2127117540608, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  183. input_tensor min/max: 0.000000/1.000000
  184. target_tensor min/max: 0.000000/1.000000
  185. input_tensor data sample: [0.50262064 0.5055404  0.5037708  0.51130486 0.53210354]
  186. target_tensor data sample: [0. 0. 0. 0. 0.]
  187.   pred_logits min/max: -18.638235/10.057793
  188.   pred_logits sample: [-4.906348   0.6163085 -1.3778951 -2.8572128 -2.77842  ]
  189.   target_tensor stats: total_pixels=196608, positive_pixels=60038, negative_pixels=136570, positive_ratio=0.305369
  190.   Total grad_norm: 5.369219e+00, avg: 6.101385e-02
  191.   Zero gradients: 17/88 (19.3%)
  192.   Loss: 0.195395
  193. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  194. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  195. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  196. onTrainOneIter: total_pixels=196608, positive_pixels=66596, negative_pixels=130012, positive_ratio=0.338725
  197. === TRAIN FUNCTION CALLED ===
  198. input_tensor id: 2127117540608, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  199. target_tensor id: 2127117535712, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  200. input_tensor min/max: 0.000000/1.000000
  201. target_tensor min/max: 0.000000/1.000000
  202. input_tensor data sample: [0.52460366 0.5244897  0.524363   0.52421945 0.52408665]
  203. target_tensor data sample: [0. 0. 0. 0. 0.]
  204.   pred_logits min/max: -21.231295/9.863961
  205.   pred_logits sample: [-4.5722823 -0.8571365 -1.4108061 -4.0296717 -4.0217266]
  206.   target_tensor stats: total_pixels=196608, positive_pixels=66596, negative_pixels=130012, positive_ratio=0.338725
  207.   Total grad_norm: 8.823583e+00, avg: 1.002680e-01
  208.   Zero gradients: 17/88 (19.3%)
  209.   Loss: 0.280314
  210. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  211. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  212. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  213. onTrainOneIter: total_pixels=196608, positive_pixels=65776, negative_pixels=130832, positive_ratio=0.334554
  214. === TRAIN FUNCTION CALLED ===
  215. input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  216. target_tensor id: 2127117541184, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  217. input_tensor min/max: 0.000000/1.000000
  218. target_tensor min/max: 0.000000/1.000000
  219. input_tensor data sample: [0.73016024 0.7404815  0.75060666 0.7508073  0.7453999 ]
  220. target_tensor data sample: [0. 0. 0. 0. 0.]
  221.   pred_logits min/max: -18.398451/10.207720
  222.   pred_logits sample: [-4.2961097   0.24168685 -0.7255419  -2.3670042  -2.714671  ]
  223.   target_tensor stats: total_pixels=196608, positive_pixels=65776, negative_pixels=130832, positive_ratio=0.334554
  224.   Total grad_norm: 8.700741e+00, avg: 9.887206e-02
  225.   Zero gradients: 16/88 (18.2%)
  226.   Loss: 0.313794
  227. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.009528/1.000000
  228. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  229. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  230. onTrainOneIter: total_pixels=196608, positive_pixels=62885, negative_pixels=133723, positive_ratio=0.319850
  231. === TRAIN FUNCTION CALLED ===
  232. input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  233. target_tensor id: 2127117535280, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  234. input_tensor min/max: 0.009528/1.000000
  235. target_tensor min/max: 0.000000/1.000000
  236. input_tensor data sample: [0.9843137 0.9843137 0.9843137 0.9843137 0.9843137]
  237. target_tensor data sample: [0. 0. 0. 0. 0.]
  238.   pred_logits min/max: -15.099107/9.275981
  239.   pred_logits sample: [-5.9354715  2.48184   -3.4873571 -5.2332025 -5.772358 ]
  240.   target_tensor stats: total_pixels=196608, positive_pixels=62885, negative_pixels=133723, positive_ratio=0.319850
  241.   Total grad_norm: 6.640438e+00, avg: 7.545952e-02
  242.   Zero gradients: 17/88 (19.3%)
  243.   Loss: 0.221051
  244. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  245. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  246. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  247. onTrainOneIter: total_pixels=196608, positive_pixels=59960, negative_pixels=136648, positive_ratio=0.304972
  248. === TRAIN FUNCTION CALLED ===
  249. input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  250. target_tensor id: 2127117541760, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  251. input_tensor min/max: 0.000000/1.000000
  252. target_tensor min/max: 0.000000/1.000000
  253. input_tensor data sample: [0.33630127 0.32305497 0.307116   0.3292566  0.3842591 ]
  254. target_tensor data sample: [0. 0. 0. 0. 0.]
  255.   pred_logits min/max: -16.089781/9.791711
  256.   pred_logits sample: [-4.495612  -1.9841919 -2.935329  -3.786987  -3.5490012]
  257.   target_tensor stats: total_pixels=196608, positive_pixels=59960, negative_pixels=136648, positive_ratio=0.304972
  258.   Total grad_norm: 2.765088e+01, avg: 3.142145e-01
  259.   Zero gradients: 13/88 (14.8%)
  260.   Loss: 0.603987
  261. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.005607/1.000000
  262. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  263. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  264. onTrainOneIter: total_pixels=196608, positive_pixels=60896, negative_pixels=135712, positive_ratio=0.309733
  265. === TRAIN FUNCTION CALLED ===
  266. input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  267. target_tensor id: 2127117533840, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  268. input_tensor min/max: 0.005607/1.000000
  269. target_tensor min/max: 0.000000/1.000000
  270. input_tensor data sample: [0.22499394 0.21625811 0.31263733 0.3163157  0.317699  ]
  271. target_tensor data sample: [0. 0. 0. 0. 0.]
  272.   pred_logits min/max: -15.114578/8.362134
  273.   pred_logits sample: [-3.8244817 -2.4959428 -2.8394878 -3.6102636 -4.0377254]
  274.   target_tensor stats: total_pixels=196608, positive_pixels=60896, negative_pixels=135712, positive_ratio=0.309733
  275.   Total grad_norm: 8.240419e+00, avg: 9.364112e-02
  276.   Zero gradients: 16/88 (18.2%)
  277.   Loss: 0.230042
  278. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  279. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  280. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  281. onTrainOneIter: total_pixels=196608, positive_pixels=62055, negative_pixels=134553, positive_ratio=0.315628
  282. === TRAIN FUNCTION CALLED ===
  283. input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  284. target_tensor id: 2127117542336, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  285. input_tensor min/max: 0.000000/1.000000
  286. target_tensor min/max: 0.000000/1.000000
  287. input_tensor data sample: [0.7985813  0.795848   0.79368013 0.79222304 0.7900003 ]
  288. target_tensor data sample: [0. 0. 0. 0. 0.]
  289.   pred_logits min/max: -15.357988/7.228970
  290.   pred_logits sample: [-4.1696863  -1.3473691  -0.58398455 -3.9897606  -3.883157  ]
  291.   target_tensor stats: total_pixels=196608, positive_pixels=62055, negative_pixels=134553, positive_ratio=0.315628
  292.   Total grad_norm: 1.233695e+01, avg: 1.401926e-01
  293.   Zero gradients: 16/88 (18.2%)
  294.   Loss: 0.294917
  295. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  296. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  297. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  298. onTrainOneIter: total_pixels=196608, positive_pixels=62153, negative_pixels=134455, positive_ratio=0.316127
  299. === TRAIN FUNCTION CALLED ===
  300. input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  301. target_tensor id: 2127117533984, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  302. input_tensor min/max: 0.000000/1.000000
  303. target_tensor min/max: 0.000000/1.000000
  304. input_tensor data sample: [0.06908149 0.06904165 0.06914473 0.06926265 0.06937093]
  305. target_tensor data sample: [0. 0. 0. 0. 0.]
  306.   pred_logits min/max: -17.118107/7.950355
  307.   pred_logits sample: [-3.8110635 -4.100872  -4.1111913 -3.4802969 -4.0880437]
  308.   target_tensor stats: total_pixels=196608, positive_pixels=62153, negative_pixels=134455, positive_ratio=0.316127
  309.   Total grad_norm: 7.727636e+00, avg: 8.781404e-02
  310.   Zero gradients: 16/88 (18.2%)
  311.   Loss: 0.206417
  312. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  313. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  314. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  315. onTrainOneIter: total_pixels=196608, positive_pixels=65836, negative_pixels=130772, positive_ratio=0.334859
  316. === TRAIN FUNCTION CALLED ===
  317. input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  318. target_tensor id: 2127117536288, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  319. input_tensor min/max: 0.000000/1.000000
  320. target_tensor min/max: 0.000000/1.000000
  321. input_tensor data sample: [0.3332027  0.32920265 0.3213459  0.31719378 0.30544254]
  322. target_tensor data sample: [0. 0. 0. 0. 0.]
  323.   pred_logits min/max: -14.921435/7.857790
  324.   pred_logits sample: [-4.045929  -2.456232  -1.8165385 -3.446359  -3.5477982]
  325.   target_tensor stats: total_pixels=196608, positive_pixels=65836, negative_pixels=130772, positive_ratio=0.334859
  326.   Total grad_norm: 6.278506e+00, avg: 7.134666e-02
  327.   Zero gradients: 16/88 (18.2%)
  328.   Loss: 0.215464
  329. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  330. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  331. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  332. onTrainOneIter: total_pixels=196608, positive_pixels=63483, negative_pixels=133125, positive_ratio=0.322891
  333. === TRAIN FUNCTION CALLED ===
  334. input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  335. target_tensor id: 2127117536576, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  336. input_tensor min/max: 0.000000/1.000000
  337. target_tensor min/max: 0.000000/1.000000
  338. input_tensor data sample: [0.90201896 0.90201896 0.90201896 0.90201896 0.90201896]
  339. target_tensor data sample: [0. 0. 0. 0. 0.]
  340.   pred_logits min/max: -15.289414/7.923834
  341.   pred_logits sample: [-5.1892467  0.3257783 -3.137312  -3.9267967 -2.9589558]
  342.   target_tensor stats: total_pixels=196608, positive_pixels=63483, negative_pixels=133125, positive_ratio=0.322891
  343.   Total grad_norm: 2.001761e+01, avg: 2.274728e-01
  344.   Zero gradients: 15/88 (17.0%)
  345.   Loss: 0.327865
  346. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  347. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  348. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  349. onTrainOneIter: total_pixels=196608, positive_pixels=66364, negative_pixels=130244, positive_ratio=0.337545
  350. === TRAIN FUNCTION CALLED ===
  351. input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  352. target_tensor id: 2127117537440, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  353. input_tensor min/max: 0.000000/1.000000
  354. target_tensor min/max: 0.000000/1.000000
  355. input_tensor data sample: [0.93682104 0.9366163  0.9301388  0.9306011  0.92951435]
  356. target_tensor data sample: [0. 0. 0. 0. 0.]
  357.   pred_logits min/max: -17.635593/9.228088
  358.   pred_logits sample: [-5.3889318  -0.08361167 -2.1326015  -2.2848048  -2.4422824 ]
  359.   target_tensor stats: total_pixels=196608, positive_pixels=66364, negative_pixels=130244, positive_ratio=0.337545
  360.   Total grad_norm: 2.013925e+01, avg: 2.288551e-01
  361.   Zero gradients: 15/88 (17.0%)
  362.   Loss: 0.356524
  363. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  364. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  365. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  366. onTrainOneIter: total_pixels=196608, positive_pixels=65618, negative_pixels=130990, positive_ratio=0.333750
  367. === TRAIN FUNCTION CALLED ===
  368. input_tensor id: 2127144432944, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  369. target_tensor id: 2127117536288, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  370. input_tensor min/max: 0.000000/1.000000
  371. target_tensor min/max: 0.000000/1.000000
  372. input_tensor data sample: [0.6234512  0.62185526 0.6202409  0.6186082  0.6169569 ]
  373. target_tensor data sample: [0. 0. 0. 0. 0.]
  374.   pred_logits min/max: -18.993696/5.892333
  375.   pred_logits sample: [-2.4105806   0.32982633 -2.3814206  -1.399349   -2.8512943 ]
  376.   target_tensor stats: total_pixels=196608, positive_pixels=65618, negative_pixels=130990, positive_ratio=0.333750
  377.   Total grad_norm: 1.207343e+01, avg: 1.371981e-01
  378.   Zero gradients: 14/88 (15.9%)
  379.   Loss: 0.295563
  380. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.033946/1.000000
  381. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  382. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  383. onTrainOneIter: total_pixels=196608, positive_pixels=60177, negative_pixels=136431, positive_ratio=0.306076
  384. === TRAIN FUNCTION CALLED ===
  385. input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  386. target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  387. input_tensor min/max: 0.033946/1.000000
  388. target_tensor min/max: 0.000000/1.000000
  389. input_tensor data sample: [0.5714462  0.5824624  0.58264655 0.57580924 0.57451284]
  390. target_tensor data sample: [0. 0. 0. 0. 0.]
  391.   pred_logits min/max: -20.553726/8.566295
  392.   pred_logits sample: [-3.9655604   0.96089125 -3.0078368  -2.1678395  -2.479184  ]
  393.   target_tensor stats: total_pixels=196608, positive_pixels=60177, negative_pixels=136431, positive_ratio=0.306076
  394.   Total grad_norm: 7.800439e+00, avg: 8.864135e-02
  395.   Zero gradients: 16/88 (18.2%)
  396.   Loss: 0.214262
  397. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.949539
  398. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  399. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  400. onTrainOneIter: total_pixels=196608, positive_pixels=66052, negative_pixels=130556, positive_ratio=0.335958
  401. === TRAIN FUNCTION CALLED ===
  402. input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  403. target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  404. input_tensor min/max: 0.000000/0.949539
  405. target_tensor min/max: 0.000000/1.000000
  406. input_tensor data sample: [0.13139182 0.13866419 0.13650595 0.13696605 0.13724683]
  407. target_tensor data sample: [0. 0. 0. 0. 0.]
  408.   pred_logits min/max: -18.889837/8.157580
  409.   pred_logits sample: [-2.952438  -2.9505057 -3.1360536 -3.050571  -3.6535916]
  410.   target_tensor stats: total_pixels=196608, positive_pixels=66052, negative_pixels=130556, positive_ratio=0.335958
  411.   Total grad_norm: 5.657471e+00, avg: 6.428944e-02
  412.   Zero gradients: 17/88 (19.3%)
  413.   Loss: 0.188542
  414. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  415. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  416. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  417. onTrainOneIter: total_pixels=196608, positive_pixels=59883, negative_pixels=136725, positive_ratio=0.304581
  418. === TRAIN FUNCTION CALLED ===
  419. input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  420. target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  421. input_tensor min/max: 0.000000/1.000000
  422. target_tensor min/max: 0.000000/1.000000
  423. input_tensor data sample: [0.9339851  0.93063235 0.920338   0.9100436  0.91274273]
  424. target_tensor data sample: [0. 0. 0. 0. 0.]
  425.   pred_logits min/max: -17.082052/7.269665
  426.   pred_logits sample: [-5.706052   -0.43251267 -5.8534803  -7.1242924  -5.9445167 ]
  427.   target_tensor stats: total_pixels=196608, positive_pixels=59883, negative_pixels=136725, positive_ratio=0.304581
  428.   Total grad_norm: 9.922237e+00, avg: 1.127527e-01
  429.   Zero gradients: 16/88 (18.2%)
  430.   Loss: 0.271777
  431. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  432. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  433. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  434. onTrainOneIter: total_pixels=196608, positive_pixels=66281, negative_pixels=130327, positive_ratio=0.337123
  435. === TRAIN FUNCTION CALLED ===
  436. input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  437. target_tensor id: 2127117535424, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  438. input_tensor min/max: 0.000000/1.000000
  439. target_tensor min/max: 0.000000/1.000000
  440. input_tensor data sample: [0.910467   0.9105796  0.90350425 0.8964073  0.8965049 ]
  441. target_tensor data sample: [0. 0. 0. 0. 0.]
  442.   pred_logits min/max: -19.048122/6.673307
  443.   pred_logits sample: [-6.365427  -2.1181576 -3.0997455 -5.8022437 -3.8753278]
  444.   target_tensor stats: total_pixels=196608, positive_pixels=66281, negative_pixels=130327, positive_ratio=0.337123
  445.   Total grad_norm: 6.779262e+00, avg: 7.703707e-02
  446.   Zero gradients: 16/88 (18.2%)
  447.   Loss: 0.228261
  448. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  449. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  450. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  451. onTrainOneIter: total_pixels=196608, positive_pixels=62250, negative_pixels=134358, positive_ratio=0.316620
  452. === TRAIN FUNCTION CALLED ===
  453. input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  454. target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  455. input_tensor min/max: 0.000000/1.000000
  456. target_tensor min/max: 0.000000/1.000000
  457. input_tensor data sample: [0.40016812 0.4001449  0.4019328  0.4006391  0.39729145]
  458. target_tensor data sample: [0. 0. 0. 0. 0.]
  459.   pred_logits min/max: -19.240149/6.941235
  460.   pred_logits sample: [-3.5946527 -2.404446  -2.034595  -2.8078148 -3.102897 ]
  461.   target_tensor stats: total_pixels=196608, positive_pixels=62250, negative_pixels=134358, positive_ratio=0.316620
  462.   Total grad_norm: 1.018770e+01, avg: 1.157693e-01
  463.   Zero gradients: 16/88 (18.2%)
  464.   Loss: 0.264548
  465. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.056059/1.000000
  466. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  467. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  468. onTrainOneIter: total_pixels=196608, positive_pixels=63742, negative_pixels=132866, positive_ratio=0.324209
  469. === TRAIN FUNCTION CALLED ===
  470. input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  471. target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  472. input_tensor min/max: 0.056059/1.000000
  473. target_tensor min/max: 0.000000/1.000000
  474. input_tensor data sample: [0.51105714 0.51164067 0.5121992  0.51267946 0.45662424]
  475. target_tensor data sample: [0. 0. 0. 0. 0.]
  476.   pred_logits min/max: -19.424805/7.869545
  477.   pred_logits sample: [-3.8387825 -1.8366293 -2.0311072 -5.2345695 -2.5528834]
  478.   target_tensor stats: total_pixels=196608, positive_pixels=63742, negative_pixels=132866, positive_ratio=0.324209
  479.   Total grad_norm: 5.092747e+00, avg: 5.787213e-02
  480.   Zero gradients: 17/88 (19.3%)
  481.   Loss: 0.137636
  482. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.070583/1.000000
  483. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  484. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  485. onTrainOneIter: total_pixels=196608, positive_pixels=60911, negative_pixels=135697, positive_ratio=0.309809
  486. === TRAIN FUNCTION CALLED ===
  487. input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  488. target_tensor id: 2127117542192, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  489. input_tensor min/max: 0.070583/1.000000
  490. target_tensor min/max: 0.000000/1.000000
  491. input_tensor data sample: [0.7975298  0.7978341  0.79855996 0.7994592  0.80059665]
  492. target_tensor data sample: [0. 0. 0. 0. 0.]
  493.   pred_logits min/max: -18.442959/8.092695
  494.   pred_logits sample: [-6.1459017 -2.4756172 -4.3615456 -3.950786  -4.515348 ]
  495.   target_tensor stats: total_pixels=196608, positive_pixels=60911, negative_pixels=135697, positive_ratio=0.309809
  496.   Total grad_norm: 7.955581e+00, avg: 9.040433e-02
  497.   Zero gradients: 17/88 (19.3%)
  498.   Loss: 0.208783
  499. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  500. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  501. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  502. onTrainOneIter: total_pixels=196608, positive_pixels=60226, negative_pixels=136382, positive_ratio=0.306325
  503. === TRAIN FUNCTION CALLED ===
  504. input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  505. target_tensor id: 2127117538016, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  506. input_tensor min/max: 0.000000/1.000000
  507. target_tensor min/max: 0.000000/1.000000
  508. input_tensor data sample: [0.6816234  0.6811441  0.6863018  0.70137674 0.79480106]
  509. target_tensor data sample: [0. 0. 0. 0. 0.]
  510.   pred_logits min/max: -20.050505/7.682349
  511.   pred_logits sample: [-3.5655038 -1.8527833 -4.715788  -1.7698956 -4.470682 ]
  512.   target_tensor stats: total_pixels=196608, positive_pixels=60226, negative_pixels=136382, positive_ratio=0.306325
  513.   Total grad_norm: 1.282556e+01, avg: 1.457450e-01
  514.   Zero gradients: 15/88 (17.0%)
  515.   Loss: 0.308620
  516. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000443/1.000000
  517. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  518. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  519. onTrainOneIter: total_pixels=196608, positive_pixels=67241, negative_pixels=129367, positive_ratio=0.342005
  520. === TRAIN FUNCTION CALLED ===
  521. input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  522. target_tensor id: 2127117539600, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  523. input_tensor min/max: 0.000443/1.000000
  524. target_tensor min/max: 0.000000/1.000000
  525. input_tensor data sample: [0.2906826  0.29090518 0.2910909  0.29129034 0.29142997]
  526. target_tensor data sample: [0. 0. 0. 0. 0.]
  527.   pred_logits min/max: -17.146389/7.148095
  528.   pred_logits sample: [-3.1176658 -2.602241  -2.7719784 -3.6554322 -3.2226985]
  529.   target_tensor stats: total_pixels=196608, positive_pixels=67241, negative_pixels=129367, positive_ratio=0.342005
  530.   Total grad_norm: 5.208597e+00, avg: 5.918860e-02
  531.   Zero gradients: 16/88 (18.2%)
  532.   Loss: 0.197295
  533. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  534. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  535. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  536. onTrainOneIter: total_pixels=196608, positive_pixels=63587, negative_pixels=133021, positive_ratio=0.323420
  537. === TRAIN FUNCTION CALLED ===
  538. input_tensor id: 2127117539600, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  539. target_tensor id: 2127117533408, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  540. input_tensor min/max: 0.000000/1.000000
  541. target_tensor min/max: 0.000000/1.000000
  542. input_tensor data sample: [0.32651213 0.32723528 0.32737562 0.32758117 0.3278699 ]
  543. target_tensor data sample: [0. 0. 0. 0. 0.]
  544.   pred_logits min/max: -24.800102/9.366374
  545.   pred_logits sample: [-2.9568644 -2.9865596 -2.1183672 -3.5754726 -4.0290723]
  546.   target_tensor stats: total_pixels=196608, positive_pixels=63587, negative_pixels=133021, positive_ratio=0.323420
  547.   Total grad_norm: 5.289403e+00, avg: 6.010685e-02
  548.   Zero gradients: 17/88 (19.3%)
  549.   Loss: 0.155098
  550. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  551. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  552. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  553. onTrainOneIter: total_pixels=196608, positive_pixels=62260, negative_pixels=134348, positive_ratio=0.316671
  554. === TRAIN FUNCTION CALLED ===
  555. input_tensor id: 2127117539600, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  556. target_tensor id: 2127117536864, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  557. input_tensor min/max: 0.000000/1.000000
  558. target_tensor min/max: 0.000000/1.000000
  559. input_tensor data sample: [0.77622557 0.77949905 0.7803165  0.77980065 0.78029484]
  560. target_tensor data sample: [0. 0. 0. 0. 0.]
  561.   pred_logits min/max: -15.465410/8.292643
  562.   pred_logits sample: [-5.1960363 -2.7262805 -4.2124124 -3.4014785 -3.5092165]
  563.   target_tensor stats: total_pixels=196608, positive_pixels=62260, negative_pixels=134348, positive_ratio=0.316671
  564.   Total grad_norm: 1.733326e+01, avg: 1.969689e-01
  565.   Zero gradients: 15/88 (17.0%)
  566.   Loss: 0.270896
  567. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.007880/1.000000
  568. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  569. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  570. onTrainOneIter: total_pixels=196608, positive_pixels=63661, negative_pixels=132947, positive_ratio=0.323797
  571. === TRAIN FUNCTION CALLED ===
  572. input_tensor id: 2127117536864, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  573. target_tensor id: 2127117540896, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  574. input_tensor min/max: 0.007880/1.000000
  575. target_tensor min/max: 0.000000/1.000000
  576. input_tensor data sample: [0.9487566  0.9545759  0.96072006 0.9586823  0.9516822 ]
  577. target_tensor data sample: [0. 0. 0. 0. 0.]
  578.   pred_logits min/max: -15.762245/8.872600
  579.   pred_logits sample: [-7.0780697 -1.9001844 -7.3066106 -7.5993633 -7.7355614]
  580.   target_tensor stats: total_pixels=196608, positive_pixels=63661, negative_pixels=132947, positive_ratio=0.323797
  581.   Total grad_norm: 9.250301e+00, avg: 1.051171e-01
  582.   Zero gradients: 16/88 (18.2%)
  583.   Loss: 0.200962
  584. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  585. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  586. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  587. onTrainOneIter: total_pixels=196608, positive_pixels=59623, negative_pixels=136985, positive_ratio=0.303258
  588. === TRAIN FUNCTION CALLED ===
  589. input_tensor id: 2127117536864, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  590. target_tensor id: 2127117537440, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  591. input_tensor min/max: 0.000000/1.000000
  592. target_tensor min/max: 0.000000/1.000000
  593. input_tensor data sample: [0.14610593 0.1946109  0.24477606 0.26804468 0.26333246]
  594. target_tensor data sample: [0. 0. 0. 0. 0.]
  595.   pred_logits min/max: -15.081598/7.973622
  596.   pred_logits sample: [-3.2265728 -3.394641  -2.7356813 -2.5273912 -2.807359 ]
  597.   target_tensor stats: total_pixels=196608, positive_pixels=59623, negative_pixels=136985, positive_ratio=0.303258
  598.   Total grad_norm: 2.116366e+01, avg: 2.404961e-01
  599.   Zero gradients: 14/88 (15.9%)
  600.   Loss: 0.355708
  601. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  602. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  603. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  604. onTrainOneIter: total_pixels=196608, positive_pixels=62786, negative_pixels=133822, positive_ratio=0.319346
  605. === TRAIN FUNCTION CALLED ===
  606. input_tensor id: 2127117537440, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  607. target_tensor id: 2127117536288, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  608. input_tensor min/max: 0.000000/1.000000
  609. target_tensor min/max: 0.000000/1.000000
  610. input_tensor data sample: [0.5472278  0.5470247  0.5468248  0.54662937 0.5464415 ]
  611. target_tensor data sample: [0. 0. 0. 0. 0.]
  612.   pred_logits min/max: -18.813835/9.649268
  613.   pred_logits sample: [-3.7702944 -2.8623612 -3.6244416 -3.1673868 -3.6599746]
  614.   target_tensor stats: total_pixels=196608, positive_pixels=62786, negative_pixels=133822, positive_ratio=0.319346
  615.   Total grad_norm: 6.757914e+00, avg: 7.679448e-02
  616.   Zero gradients: 16/88 (18.2%)
  617.   Loss: 0.161846
  618. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  619. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  620. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  621. onTrainOneIter: total_pixels=196608, positive_pixels=57118, negative_pixels=139490, positive_ratio=0.290517
  622. === TRAIN FUNCTION CALLED ===
  623. input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  624. target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  625. input_tensor min/max: 0.000000/1.000000
  626. target_tensor min/max: 0.000000/1.000000
  627. input_tensor data sample: [1. 1. 1. 1. 1.]
  628. target_tensor data sample: [0. 0. 0. 0. 0.]
  629.   pred_logits min/max: -18.241982/8.196582
  630.   pred_logits sample: [-5.855565  -1.6025399 -6.074429  -6.626479  -5.5634313]
  631.   target_tensor stats: total_pixels=196608, positive_pixels=57118, negative_pixels=139490, positive_ratio=0.290517
  632.   Total grad_norm: 1.313770e+01, avg: 1.492920e-01
  633.   Zero gradients: 15/88 (17.0%)
  634.   Loss: 0.252659
  635. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.108599/1.000000
  636. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  637. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  638. onTrainOneIter: total_pixels=196608, positive_pixels=66934, negative_pixels=129674, positive_ratio=0.340444
  639. === TRAIN FUNCTION CALLED ===
  640. input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  641. target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  642. input_tensor min/max: 0.108599/1.000000
  643. target_tensor min/max: 0.000000/1.000000
  644. input_tensor data sample: [0.31287837 0.3132637  0.3129761  0.3132492  0.3135593 ]
  645. target_tensor data sample: [0. 0. 0. 0. 0.]
  646.   pred_logits min/max: -15.678344/8.656833
  647.   pred_logits sample: [-2.1171982 -2.3288114 -2.4293106 -4.0685472 -3.7923076]
  648.   target_tensor stats: total_pixels=196608, positive_pixels=66934, negative_pixels=129674, positive_ratio=0.340444
  649.   Total grad_norm: 9.281142e+00, avg: 1.054675e-01
  650.   Zero gradients: 16/88 (18.2%)
  651.   Loss: 0.215952
  652. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.007893/1.000000
  653. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  654. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  655. onTrainOneIter: total_pixels=196608, positive_pixels=63652, negative_pixels=132956, positive_ratio=0.323751
  656. === TRAIN FUNCTION CALLED ===
  657. input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  658. target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  659. input_tensor min/max: 0.007893/1.000000
  660. target_tensor min/max: 0.000000/1.000000
  661. input_tensor data sample: [0.46717143 0.46717167 0.46717227 0.4692511  0.4536056 ]
  662. target_tensor data sample: [0. 0. 0. 0. 0.]
  663.   pred_logits min/max: -19.933399/10.427228
  664.   pred_logits sample: [-3.3781598 -3.1043682 -4.1953983 -3.8783824 -4.5258155]
  665.   target_tensor stats: total_pixels=196608, positive_pixels=63652, negative_pixels=132956, positive_ratio=0.323751
  666.   Total grad_norm: 1.586424e+01, avg: 1.802754e-01
  667.   Zero gradients: 16/88 (18.2%)
  668.   Loss: 0.279551
  669. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  670. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  671. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  672. onTrainOneIter: total_pixels=196608, positive_pixels=62347, negative_pixels=134261, positive_ratio=0.317113
  673. === TRAIN FUNCTION CALLED ===
  674. input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  675. target_tensor id: 2127117535136, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  676. input_tensor min/max: 0.000000/1.000000
  677. target_tensor min/max: 0.000000/1.000000
  678. input_tensor data sample: [1. 1. 1. 1. 1.]
  679. target_tensor data sample: [0. 0. 0. 0. 0.]
  680.   pred_logits min/max: -18.501469/7.382880
  681.   pred_logits sample: [-5.885928  -1.9822763 -5.7978067 -6.279719  -5.901813 ]
  682.   target_tensor stats: total_pixels=196608, positive_pixels=62347, negative_pixels=134261, positive_ratio=0.317113
  683.   Total grad_norm: 6.419612e+00, avg: 7.295014e-02
  684.   Zero gradients: 17/88 (19.3%)
  685.   Loss: 0.146821
  686. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000958/1.000000
  687. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  688. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  689. onTrainOneIter: total_pixels=196608, positive_pixels=65981, negative_pixels=130627, positive_ratio=0.335597
  690. === TRAIN FUNCTION CALLED ===
  691. input_tensor id: 2127117535136, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  692. target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  693. input_tensor min/max: 0.000958/1.000000
  694. target_tensor min/max: 0.000000/1.000000
  695. input_tensor data sample: [1. 1. 1. 1. 1.]
  696. target_tensor data sample: [0. 0. 0. 0. 0.]
  697.   pred_logits min/max: -15.779600/9.060302
  698.   pred_logits sample: [-6.6180816 -2.8671558 -7.646466  -7.6430163 -8.011188 ]
  699.   target_tensor stats: total_pixels=196608, positive_pixels=65981, negative_pixels=130627, positive_ratio=0.335597
  700.   Total grad_norm: 4.236301e+00, avg: 4.813978e-02
  701.   Zero gradients: 17/88 (19.3%)
  702.   Loss: 0.129366
  703. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.060862/1.000000
  704. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  705. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  706. onTrainOneIter: total_pixels=196608, positive_pixels=65192, negative_pixels=131416, positive_ratio=0.331584
  707. === TRAIN FUNCTION CALLED ===
  708. input_tensor id: 2127117535136, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  709. target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  710. input_tensor min/max: 0.060862/1.000000
  711. target_tensor min/max: 0.000000/1.000000
  712. input_tensor data sample: [0.8448762  0.83817345 0.8356864  0.8310597  0.8385409 ]
  713. target_tensor data sample: [0. 0. 0. 0. 0.]
  714.   pred_logits min/max: -19.217228/8.068666
  715.   pred_logits sample: [-5.399063  -2.5961206 -5.7274303 -5.5696764 -6.552657 ]
  716.   target_tensor stats: total_pixels=196608, positive_pixels=65192, negative_pixels=131416, positive_ratio=0.331584
  717.   Total grad_norm: 6.170573e+00, avg: 7.012015e-02
  718.   Zero gradients: 16/88 (18.2%)
  719.   Loss: 0.190160
  720. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  721. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  722. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  723. onTrainOneIter: total_pixels=196608, positive_pixels=59389, negative_pixels=137219, positive_ratio=0.302068
  724. === TRAIN FUNCTION CALLED ===
  725. input_tensor id: 2127117535136, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  726. target_tensor id: 2127117542192, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  727. input_tensor min/max: 0.000000/1.000000
  728. target_tensor min/max: 0.000000/1.000000
  729. input_tensor data sample: [0.54000276 0.5401727  0.5410493  0.54192585 0.5413445 ]
  730. target_tensor data sample: [0. 0. 0. 0. 0.]
  731.   pred_logits min/max: -20.906250/10.136984
  732.   pred_logits sample: [-5.288657  -0.5613942 -4.808365  -5.148283  -6.4273825]
  733.   target_tensor stats: total_pixels=196608, positive_pixels=59389, negative_pixels=137219, positive_ratio=0.302068
  734.   Total grad_norm: 9.717779e+00, avg: 1.104293e-01
  735.   Zero gradients: 17/88 (19.3%)
  736.   Loss: 0.207772
  737. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  738. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  739. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  740. onTrainOneIter: total_pixels=196608, positive_pixels=57964, negative_pixels=138644, positive_ratio=0.294820
  741. === TRAIN FUNCTION CALLED ===
  742. input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  743. target_tensor id: 2127117538016, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  744. input_tensor min/max: 0.000000/1.000000
  745. target_tensor min/max: 0.000000/1.000000
  746. input_tensor data sample: [1. 1. 1. 1. 1.]
  747. target_tensor data sample: [0. 0. 0. 0. 0.]
  748.   pred_logits min/max: -17.454338/10.083261
  749.   pred_logits sample: [-7.375121  -2.1423428 -3.6835415 -4.190499  -3.5363479]
  750.   target_tensor stats: total_pixels=196608, positive_pixels=57964, negative_pixels=138644, positive_ratio=0.294820
  751.   Total grad_norm: 7.362339e+00, avg: 8.366294e-02
  752.   Zero gradients: 17/88 (19.3%)
  753.   Loss: 0.194175
  754. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  755. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  756. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  757. onTrainOneIter: total_pixels=196608, positive_pixels=64318, negative_pixels=132290, positive_ratio=0.327138
  758. === TRAIN FUNCTION CALLED ===
  759. input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  760. target_tensor id: 2127117536144, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  761. input_tensor min/max: 0.000000/1.000000
  762. target_tensor min/max: 0.000000/1.000000
  763. input_tensor data sample: [0.26033032 0.26178974 0.2643577  0.26182985 0.29657215]
  764. target_tensor data sample: [0. 0. 0. 0. 0.]
  765.   pred_logits min/max: -17.451447/8.749518
  766.   pred_logits sample: [-3.1394143 -2.3746457 -2.5780208 -2.6517417 -3.294534 ]
  767.   target_tensor stats: total_pixels=196608, positive_pixels=64318, negative_pixels=132290, positive_ratio=0.327138
  768.   Total grad_norm: 6.025170e+00, avg: 6.846784e-02
  769.   Zero gradients: 16/88 (18.2%)
  770.   Loss: 0.198316
  771. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.130840/1.000000
  772. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  773. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  774. onTrainOneIter: total_pixels=196608, positive_pixels=56826, negative_pixels=139782, positive_ratio=0.289032
  775. === TRAIN FUNCTION CALLED ===
  776. input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  777. target_tensor id: 2127117533408, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  778. input_tensor min/max: 0.130840/1.000000
  779. target_tensor min/max: 0.000000/1.000000
  780. input_tensor data sample: [0.5569104  0.5471595  0.5624075  0.61679864 0.66409314]
  781. target_tensor data sample: [0. 0. 0. 0. 0.]
  782.   pred_logits min/max: -17.332588/8.201318
  783.   pred_logits sample: [-4.1926503 -2.3131046 -1.782809  -4.220693  -4.3083854]
  784.   target_tensor stats: total_pixels=196608, positive_pixels=56826, negative_pixels=139782, positive_ratio=0.289032
  785.   Total grad_norm: 1.092631e+01, avg: 1.241626e-01
  786.   Zero gradients: 16/88 (18.2%)
  787.   Loss: 0.251830
  788. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  789. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  790. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  791. onTrainOneIter: total_pixels=196608, positive_pixels=65594, negative_pixels=131014, positive_ratio=0.333628
  792. === TRAIN FUNCTION CALLED ===
  793. input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  794. target_tensor id: 2127117537872, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  795. input_tensor min/max: 0.000000/1.000000
  796. target_tensor min/max: 0.000000/1.000000
  797. input_tensor data sample: [0.30872753 0.30795506 0.3072505  0.30659503 0.30607665]
  798. target_tensor data sample: [0. 0. 0. 0. 0.]
  799.   pred_logits min/max: -15.688857/9.875670
  800.   pred_logits sample: [-2.7347832 -2.9977772 -2.4747734 -3.9203231 -3.9806335]
  801.   target_tensor stats: total_pixels=196608, positive_pixels=65594, negative_pixels=131014, positive_ratio=0.333628
  802.   Total grad_norm: 7.661690e+00, avg: 8.706466e-02
  803.   Zero gradients: 16/88 (18.2%)
  804.   Loss: 0.203311
  805. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  806. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  807. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  808. onTrainOneIter: total_pixels=196608, positive_pixels=60903, negative_pixels=135705, positive_ratio=0.309769
  809. === TRAIN FUNCTION CALLED ===
  810. input_tensor id: 2127117537872, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  811. target_tensor id: 2127117540896, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  812. input_tensor min/max: 0.000000/1.000000
  813. target_tensor min/max: 0.000000/1.000000
  814. input_tensor data sample: [0.94509804 0.94509804 0.9490196  0.94509804 0.93333334]
  815. target_tensor data sample: [0. 0. 0. 0. 0.]
  816.   pred_logits min/max: -18.976940/10.455793
  817.   pred_logits sample: [-4.853873  -1.8235066 -6.3976054 -3.7020407 -7.453571 ]
  818.   target_tensor stats: total_pixels=196608, positive_pixels=60903, negative_pixels=135705, positive_ratio=0.309769
  819.   Total grad_norm: 6.020146e+00, avg: 6.841075e-02
  820.   Zero gradients: 17/88 (19.3%)
  821.   Loss: 0.161017
  822. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.013700/1.000000
  823. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  824. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  825. onTrainOneIter: total_pixels=196608, positive_pixels=63809, negative_pixels=132799, positive_ratio=0.324549
  826. === TRAIN FUNCTION CALLED ===
  827. input_tensor id: 2127117540896, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  828. target_tensor id: 2127117534560, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  829. input_tensor min/max: 0.013700/1.000000
  830. target_tensor min/max: 0.000000/1.000000
  831. input_tensor data sample: [1. 1. 1. 1. 1.]
  832. target_tensor data sample: [0. 0. 0. 0. 0.]
  833.   pred_logits min/max: -15.595974/8.512142
  834.   pred_logits sample: [-5.638851  -2.199562  -5.5557685 -5.906612  -6.0124063]
  835.   target_tensor stats: total_pixels=196608, positive_pixels=63809, negative_pixels=132799, positive_ratio=0.324549
  836.   Total grad_norm: 5.905108e+00, avg: 6.710350e-02
  837.   Zero gradients: 16/88 (18.2%)
  838.   Loss: 0.152975
  839. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  840. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  841. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  842. onTrainOneIter: total_pixels=196608, positive_pixels=58898, negative_pixels=137710, positive_ratio=0.299571
  843. === TRAIN FUNCTION CALLED ===
  844. input_tensor id: 2127117534560, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  845. target_tensor id: 2127117541184, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  846. input_tensor min/max: 0.000000/1.000000
  847. target_tensor min/max: 0.000000/1.000000
  848. input_tensor data sample: [1. 1. 1. 1. 1.]
  849. target_tensor data sample: [0. 0. 0. 0. 0.]
  850.   pred_logits min/max: -14.539489/9.890100
  851.   pred_logits sample: [-6.6866727 -1.7504314 -6.607692  -6.8713923 -6.3957305]
  852.   target_tensor stats: total_pixels=196608, positive_pixels=58898, negative_pixels=137710, positive_ratio=0.299571
  853.   Total grad_norm: 9.108993e+00, avg: 1.035113e-01
  854.   Zero gradients: 16/88 (18.2%)
  855.   Loss: 0.167791
  856. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.005656/1.000000
  857. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  858. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  859. onTrainOneIter: total_pixels=196608, positive_pixels=59339, negative_pixels=137269, positive_ratio=0.301814
  860. === TRAIN FUNCTION CALLED ===
  861. input_tensor id: 2127117541184, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  862. target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  863. input_tensor min/max: 0.005656/1.000000
  864. target_tensor min/max: 0.000000/1.000000
  865. input_tensor data sample: [0.9796097  0.9801199  0.97778463 0.972542   0.9675691 ]
  866. target_tensor data sample: [0. 0. 0. 0. 0.]
  867.   pred_logits min/max: -18.201971/9.204210
  868.   pred_logits sample: [-5.128061  -1.8479347 -6.7860436 -7.2832127 -7.4964623]
  869.   target_tensor stats: total_pixels=196608, positive_pixels=59339, negative_pixels=137269, positive_ratio=0.301814
  870.   Total grad_norm: 6.003107e+00, avg: 6.821712e-02
  871.   Zero gradients: 16/88 (18.2%)
  872.   Loss: 0.156269
  873. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  874. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  875. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  876. onTrainOneIter: total_pixels=196608, positive_pixels=63789, negative_pixels=132819, positive_ratio=0.324448
  877. === TRAIN FUNCTION CALLED ===
  878. input_tensor id: 2127117541184, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  879. target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  880. input_tensor min/max: 0.000000/1.000000
  881. target_tensor min/max: 0.000000/1.000000
  882. input_tensor data sample: [0.62337327 0.62494206 0.62651056 0.6280789  0.62964696]
  883. target_tensor data sample: [0. 0. 0. 0. 0.]
  884.   pred_logits min/max: -17.127758/10.331607
  885.   pred_logits sample: [-3.3882873 -2.0255425 -3.4521842 -3.2518628 -4.02957  ]
  886.   target_tensor stats: total_pixels=196608, positive_pixels=63789, negative_pixels=132819, positive_ratio=0.324448
  887.   Total grad_norm: 1.447163e+01, avg: 1.644503e-01
  888.   Zero gradients: 15/88 (17.0%)
  889.   Loss: 0.302376
  890. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000198/1.000000
  891. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  892. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  893. onTrainOneIter: total_pixels=196608, positive_pixels=63291, negative_pixels=133317, positive_ratio=0.321915
  894. === TRAIN FUNCTION CALLED ===
  895. input_tensor id: 2127117537008, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  896. target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  897. input_tensor min/max: 0.000198/1.000000
  898. target_tensor min/max: 0.000000/1.000000
  899. input_tensor data sample: [1. 1. 1. 1. 1.]
  900. target_tensor data sample: [0. 0. 0. 0. 0.]
  901.   pred_logits min/max: -13.293324/9.662045
  902.   pred_logits sample: [-6.2140203 -1.8821324 -5.8295836 -5.2483406 -6.1711583]
  903.   target_tensor stats: total_pixels=196608, positive_pixels=63291, negative_pixels=133317, positive_ratio=0.321915
  904.   Total grad_norm: 6.417795e+00, avg: 7.292949e-02
  905.   Zero gradients: 16/88 (18.2%)
  906.   Loss: 0.174915
  907. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  908. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  909. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  910. onTrainOneIter: total_pixels=196608, positive_pixels=62321, negative_pixels=134287, positive_ratio=0.316981
  911. === TRAIN FUNCTION CALLED ===
  912. input_tensor id: 2127117537008, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  913. target_tensor id: 2127117542336, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  914. input_tensor min/max: 0.000000/1.000000
  915. target_tensor min/max: 0.000000/1.000000
  916. input_tensor data sample: [0.6966744  0.6974533  0.69881487 0.6997276  0.7007255 ]
  917. target_tensor data sample: [0. 0. 0. 0. 0.]
  918.   pred_logits min/max: -17.328581/8.967299
  919.   pred_logits sample: [-3.3396568 -2.373651  -2.51014   -3.644245  -4.3425913]
  920.   target_tensor stats: total_pixels=196608, positive_pixels=62321, negative_pixels=134287, positive_ratio=0.316981
  921.   Total grad_norm: 5.134469e+00, avg: 5.834624e-02
  922.   Zero gradients: 17/88 (19.3%)
  923.   Loss: 0.141017
  924. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  925. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  926. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  927. onTrainOneIter: total_pixels=196608, positive_pixels=62264, negative_pixels=134344, positive_ratio=0.316691
  928. === TRAIN FUNCTION CALLED ===
  929. input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  930. target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  931. input_tensor min/max: 0.000000/1.000000
  932. target_tensor min/max: 0.000000/1.000000
  933. input_tensor data sample: [0.14117648 0.14117648 0.14117648 0.14117648 0.14117648]
  934. target_tensor data sample: [0. 0. 0. 0. 0.]
  935.   pred_logits min/max: -19.326881/8.288991
  936.   pred_logits sample: [-2.2640986 -2.780824  -2.2204611 -2.32738   -2.5331128]
  937.   target_tensor stats: total_pixels=196608, positive_pixels=62264, negative_pixels=134344, positive_ratio=0.316691
  938.   Total grad_norm: 6.556057e+00, avg: 7.450065e-02
  939.   Zero gradients: 16/88 (18.2%)
  940.   Loss: 0.158988
  941. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  942. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  943. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  944. onTrainOneIter: total_pixels=196608, positive_pixels=63798, negative_pixels=132810, positive_ratio=0.324493
  945. === TRAIN FUNCTION CALLED ===
  946. input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  947. target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  948. input_tensor min/max: 0.000000/1.000000
  949. target_tensor min/max: 0.000000/1.000000
  950. input_tensor data sample: [0.3963111  0.39642578 0.3965332  0.39688694 0.39699322]
  951. target_tensor data sample: [0. 0. 0. 0. 0.]
  952.   pred_logits min/max: -17.139322/9.320560
  953.   pred_logits sample: [-2.8763387 -2.7789052 -2.4400127 -2.121132  -2.5112505]
  954.   target_tensor stats: total_pixels=196608, positive_pixels=63798, negative_pixels=132810, positive_ratio=0.324493
  955.   Total grad_norm: 6.363823e+00, avg: 7.231617e-02
  956.   Zero gradients: 17/88 (19.3%)
  957.   Loss: 0.142143
  958. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  959. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  960. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  961. onTrainOneIter: total_pixels=196608, positive_pixels=62744, negative_pixels=133864, positive_ratio=0.319132
  962. === TRAIN FUNCTION CALLED ===
  963. input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  964. target_tensor id: 2127117536720, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  965. input_tensor min/max: 0.000000/1.000000
  966. target_tensor min/max: 0.000000/1.000000
  967. input_tensor data sample: [0.23519292 0.23541868 0.23526305 0.2343759  0.23503873]
  968. target_tensor data sample: [0. 0. 0. 0. 0.]
  969.   pred_logits min/max: -20.914375/9.933438
  970.   pred_logits sample: [-2.569855  -2.9163275 -2.526288  -3.1561742 -3.4568253]
  971.   target_tensor stats: total_pixels=196608, positive_pixels=62744, negative_pixels=133864, positive_ratio=0.319132
  972.   Total grad_norm: 8.607569e+00, avg: 9.781328e-02
  973.   Zero gradients: 16/88 (18.2%)
  974.   Loss: 0.164255
  975. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  976. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  977. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  978. onTrainOneIter: total_pixels=196608, positive_pixels=56452, negative_pixels=140156, positive_ratio=0.287130
  979. === TRAIN FUNCTION CALLED ===
  980. input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  981. target_tensor id: 2127117538016, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  982. input_tensor min/max: 0.000000/1.000000
  983. target_tensor min/max: 0.000000/1.000000
  984. input_tensor data sample: [0.29676616 0.29803535 0.29982874 0.3017616  0.30329573]
  985. target_tensor data sample: [0. 0. 0. 0. 0.]
  986.   pred_logits min/max: -17.376493/9.682109
  987.   pred_logits sample: [-3.00241   -1.7597618 -1.970201  -3.122077  -4.0058064]
  988.   target_tensor stats: total_pixels=196608, positive_pixels=56452, negative_pixels=140156, positive_ratio=0.287130
  989.   Total grad_norm: 6.598444e+00, avg: 7.498232e-02
  990.   Zero gradients: 17/88 (19.3%)
  991.   Loss: 0.152219
  992. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.006333/0.979446
  993. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  994. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  995. onTrainOneIter: total_pixels=196608, positive_pixels=63946, negative_pixels=132662, positive_ratio=0.325246
  996. === TRAIN FUNCTION CALLED ===
  997. input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  998. target_tensor id: 2127117536144, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  999. input_tensor min/max: 0.006333/0.979446
  1000. target_tensor min/max: 0.000000/1.000000
  1001. input_tensor data sample: [0.36447188 0.35725468 0.34968525 0.34103572 0.3392299 ]
  1002. target_tensor data sample: [0. 0. 0. 0. 0.]
  1003.   pred_logits min/max: -18.276306/10.350447
  1004.   pred_logits sample: [-3.110876  -3.76414   -2.9791148 -3.91517   -4.0277023]
  1005.   target_tensor stats: total_pixels=196608, positive_pixels=63946, negative_pixels=132662, positive_ratio=0.325246
  1006.   Total grad_norm: 8.193271e+00, avg: 9.310535e-02
  1007.   Zero gradients: 17/88 (19.3%)
  1008.   Loss: 0.187463
  1009. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1010. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1011. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1012. onTrainOneIter: total_pixels=196608, positive_pixels=63232, negative_pixels=133376, positive_ratio=0.321615
  1013. === TRAIN FUNCTION CALLED ===
  1014. input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1015. target_tensor id: 2127117533408, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1016. input_tensor min/max: 0.000000/1.000000
  1017. target_tensor min/max: 0.000000/1.000000
  1018. input_tensor data sample: [0.29525822 0.2924292  0.2893951  0.28596255 0.28239384]
  1019. target_tensor data sample: [0. 0. 0. 0. 0.]
  1020.   pred_logits min/max: -17.121223/9.996688
  1021.   pred_logits sample: [-2.8377306 -2.0156505 -2.0348973 -2.8039515 -3.2783327]
  1022.   target_tensor stats: total_pixels=196608, positive_pixels=63232, negative_pixels=133376, positive_ratio=0.321615
  1023.   Total grad_norm: 1.346201e+01, avg: 1.529773e-01
  1024.   Zero gradients: 16/88 (18.2%)
  1025.   Loss: 0.234369
  1026. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1027. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1028. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1029. onTrainOneIter: total_pixels=196608, positive_pixels=59097, negative_pixels=137511, positive_ratio=0.300583
  1030. === TRAIN FUNCTION CALLED ===
  1031. input_tensor id: 2127117533408, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1032. target_tensor id: 2127117540032, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1033. input_tensor min/max: 0.000000/1.000000
  1034. target_tensor min/max: 0.000000/1.000000
  1035. input_tensor data sample: [0.9394344  0.93835163 0.9425199  0.9438328  0.9514084 ]
  1036. target_tensor data sample: [0. 0. 0. 0. 0.]
  1037.   pred_logits min/max: -14.167475/10.221355
  1038.   pred_logits sample: [-4.0194135 -2.2372093 -5.091132  -5.08241   -5.291009 ]
  1039.   target_tensor stats: total_pixels=196608, positive_pixels=59097, negative_pixels=137511, positive_ratio=0.300583
  1040.   Total grad_norm: 1.541523e+01, avg: 1.751731e-01
  1041.   Zero gradients: 15/88 (17.0%)
  1042.   Loss: 0.262680
  1043. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1044. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1045. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1046. onTrainOneIter: total_pixels=196608, positive_pixels=60720, negative_pixels=135888, positive_ratio=0.308838
  1047. === TRAIN FUNCTION CALLED ===
  1048. input_tensor id: 2127117533408, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1049. target_tensor id: 2127117535856, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1050. input_tensor min/max: 0.000000/1.000000
  1051. target_tensor min/max: 0.000000/1.000000
  1052. input_tensor data sample: [0.43924886 0.43925828 0.4392669  0.43927485 0.43928218]
  1053. target_tensor data sample: [0. 0. 0. 0. 0.]
  1054.   pred_logits min/max: -19.034407/11.550397
  1055.   pred_logits sample: [-3.435771  -2.3059251 -2.2554433 -3.8883805 -4.0604706]
  1056.   target_tensor stats: total_pixels=196608, positive_pixels=60720, negative_pixels=135888, positive_ratio=0.308838
  1057.   Total grad_norm: 9.875311e+00, avg: 1.122194e-01
  1058.   Zero gradients: 16/88 (18.2%)
  1059.   Loss: 0.209333
  1060. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1061. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1062. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1063. onTrainOneIter: total_pixels=196608, positive_pixels=59897, negative_pixels=136711, positive_ratio=0.304652
  1064. === TRAIN FUNCTION CALLED ===
  1065. input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1066. target_tensor id: 2127117538160, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1067. input_tensor min/max: 0.000000/1.000000
  1068. target_tensor min/max: 0.000000/1.000000
  1069. input_tensor data sample: [0.07971865 0.07947554 0.08606026 0.08255988 0.07539687]
  1070. target_tensor data sample: [0. 0. 0. 0. 0.]
  1071.   pred_logits min/max: -16.871040/11.374657
  1072.   pred_logits sample: [-2.901302  -2.5952477 -3.2703307 -3.2710183 -3.9213095]
  1073.   target_tensor stats: total_pixels=196608, positive_pixels=59897, negative_pixels=136711, positive_ratio=0.304652
  1074.   Total grad_norm: 9.135140e+00, avg: 1.038084e-01
  1075.   Zero gradients: 16/88 (18.2%)
  1076.   Loss: 0.205695
  1077. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1078. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1079. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1080. onTrainOneIter: total_pixels=196608, positive_pixels=63878, negative_pixels=132730, positive_ratio=0.324900
  1081. === TRAIN FUNCTION CALLED ===
  1082. input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1083. target_tensor id: 2127117541616, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1084. input_tensor min/max: 0.000000/1.000000
  1085. target_tensor min/max: 0.000000/1.000000
  1086. input_tensor data sample: [0.48235947 0.48235294 0.48235294 0.48235294 0.48235294]
  1087. target_tensor data sample: [0. 0. 0. 0. 0.]
  1088.   pred_logits min/max: -18.115614/11.373105
  1089.   pred_logits sample: [-4.37724   -3.8814015 -5.0797167 -3.786492  -4.254979 ]
  1090.   target_tensor stats: total_pixels=196608, positive_pixels=63878, negative_pixels=132730, positive_ratio=0.324900
  1091.   Total grad_norm: 6.408868e+00, avg: 7.282804e-02
  1092.   Zero gradients: 16/88 (18.2%)
  1093.   Loss: 0.154247
  1094. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.982491
  1095. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1096. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1097. onTrainOneIter: total_pixels=196608, positive_pixels=63475, negative_pixels=133133, positive_ratio=0.322851
  1098. === TRAIN FUNCTION CALLED ===
  1099. input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1100. target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1101. input_tensor min/max: 0.000000/0.982491
  1102. target_tensor min/max: 0.000000/1.000000
  1103. input_tensor data sample: [0.4153527  0.41499883 0.41089106 0.40683705 0.3995743 ]
  1104. target_tensor data sample: [0. 0. 0. 0. 0.]
  1105.   pred_logits min/max: -18.218029/10.478106
  1106.   pred_logits sample: [-4.087691  -2.7718482 -3.3362787 -3.961798  -4.8355126]
  1107.   target_tensor stats: total_pixels=196608, positive_pixels=63475, negative_pixels=133133, positive_ratio=0.322851
  1108.   Total grad_norm: 4.474280e+00, avg: 5.084409e-02
  1109.   Zero gradients: 16/88 (18.2%)
  1110.   Loss: 0.113150
  1111. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1112. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1113. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1114. onTrainOneIter: total_pixels=196608, positive_pixels=61833, negative_pixels=134775, positive_ratio=0.314499
  1115. === TRAIN FUNCTION CALLED ===
  1116. input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1117. target_tensor id: 2127117535712, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1118. input_tensor min/max: 0.000000/1.000000
  1119. target_tensor min/max: 0.000000/1.000000
  1120. input_tensor data sample: [0.78351593 0.7835667  0.7836641  0.7838259  0.78577363]
  1121. target_tensor data sample: [0. 0. 0. 0. 0.]
  1122.   pred_logits min/max: -15.482409/10.918242
  1123.   pred_logits sample: [-4.941795  -0.6911363 -3.8678432 -4.8598986 -4.3533115]
  1124.   target_tensor stats: total_pixels=196608, positive_pixels=61833, negative_pixels=134775, positive_ratio=0.314499
  1125.   Total grad_norm: 1.374920e+01, avg: 1.562409e-01
  1126.   Zero gradients: 15/88 (17.0%)
  1127.   Loss: 0.281596
  1128. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1129. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1130. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1131. onTrainOneIter: total_pixels=196608, positive_pixels=59375, negative_pixels=137233, positive_ratio=0.301997
  1132. === TRAIN FUNCTION CALLED ===
  1133. input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1134. target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1135. input_tensor min/max: 0.000000/1.000000
  1136. target_tensor min/max: 0.000000/1.000000
  1137. input_tensor data sample: [0.5256015  0.52060986 0.5186995  0.52241004 0.52920365]
  1138. target_tensor data sample: [0. 0. 0. 0. 0.]
  1139.   pred_logits min/max: -22.547131/11.043216
  1140.   pred_logits sample: [-4.611463  -1.901287  -3.9827065 -4.63077   -3.9644232]
  1141.   target_tensor stats: total_pixels=196608, positive_pixels=59375, negative_pixels=137233, positive_ratio=0.301997
  1142.   Total grad_norm: 1.129185e+01, avg: 1.283165e-01
  1143.   Zero gradients: 15/88 (17.0%)
  1144.   Loss: 0.258179
  1145. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1146. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1147. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1148. onTrainOneIter: total_pixels=196608, positive_pixels=63426, negative_pixels=133182, positive_ratio=0.322601
  1149. === TRAIN FUNCTION CALLED ===
  1150. input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1151. target_tensor id: 2127117540176, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1152. input_tensor min/max: 0.000000/1.000000
  1153. target_tensor min/max: 0.000000/1.000000
  1154. input_tensor data sample: [0.35548508 0.3568854  0.35450715 0.3524825  0.35229024]
  1155. target_tensor data sample: [0. 0. 0. 0. 0.]
  1156.   pred_logits min/max: -18.693195/11.868806
  1157.   pred_logits sample: [-4.249918  -2.3057885 -1.9677954 -4.7093353 -4.9494405]
  1158.   target_tensor stats: total_pixels=196608, positive_pixels=63426, negative_pixels=133182, positive_ratio=0.322601
  1159.   Total grad_norm: 5.823107e+00, avg: 6.617167e-02
  1160.   Zero gradients: 17/88 (19.3%)
  1161.   Loss: 0.141586
  1162. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1163. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1164. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1165. onTrainOneIter: total_pixels=196608, positive_pixels=58416, negative_pixels=138192, positive_ratio=0.297119
  1166. === TRAIN FUNCTION CALLED ===
  1167. input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1168. target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1169. input_tensor min/max: 0.000000/1.000000
  1170. target_tensor min/max: 0.000000/1.000000
  1171. input_tensor data sample: [0.43878824 0.43494838 0.4271439  0.42232224 0.4230855 ]
  1172. target_tensor data sample: [0. 0. 0. 0. 0.]
  1173.   pred_logits min/max: -27.498243/10.141516
  1174.   pred_logits sample: [-3.1762288 -2.664098  -3.2043517 -3.190942  -3.2147143]
  1175.   target_tensor stats: total_pixels=196608, positive_pixels=58416, negative_pixels=138192, positive_ratio=0.297119
  1176.   Total grad_norm: 6.051132e+00, avg: 6.876286e-02
  1177.   Zero gradients: 17/88 (19.3%)
  1178.   Loss: 0.130991
  1179. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1180. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1181. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1182. onTrainOneIter: total_pixels=196608, positive_pixels=61145, negative_pixels=135463, positive_ratio=0.311000
  1183. === TRAIN FUNCTION CALLED ===
  1184. input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1185. target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1186. input_tensor min/max: 0.000000/1.000000
  1187. target_tensor min/max: 0.000000/1.000000
  1188. input_tensor data sample: [0.3110924  0.30823323 0.30512977 0.30235988 0.3002512 ]
  1189. target_tensor data sample: [0. 0. 0. 0. 0.]
  1190.   pred_logits min/max: -22.577290/11.847639
  1191.   pred_logits sample: [-2.85167   -3.0088475 -1.9843479 -2.9361854 -3.4338117]
  1192.   target_tensor stats: total_pixels=196608, positive_pixels=61145, negative_pixels=135463, positive_ratio=0.311000
  1193.   Total grad_norm: 4.517135e+00, avg: 5.133108e-02
  1194.   Zero gradients: 17/88 (19.3%)
  1195.   Loss: 0.116914
  1196. onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1197. onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
  1198. onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  1199. onTrainOneIter: total_pixels=196608, positive_pixels=69023, negative_pixels=127585, positive_ratio=0.351069
  1200. === TRAIN FUNCTION CALLED ===
  1201. input_tensor id: 2127117534416, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
  1202. target_tensor id: 2127117536720, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
  1203. input_tensor min/max: 0.000000/1.000000
  1204. target_tensor min/max: 0.000000/1.000000
  1205. input_tensor data sample: [0.87912726 0.87912726 0.87912726 0.87912726 0.87912726]
  1206. target_tensor data sample: [0. 0. 0. 0. 0.]
  1207.   pred_logits min/max: -15.272973/9.378516
  1208.   pred_logits sample: [-4.9603224 -1.193005  -5.6421976 -6.114594  -6.0347657]
  1209.   target_tensor stats: total_pixels=196608, positive_pixels=69023, negative_pixels=127585, positive_ratio=0.351069
  1210.   Total grad_norm: 4.873687e+00, avg: 5.538280e-02
复制代码
回复 支持 反对

使用道具 举报

2

主题

28

帖子

679

积分

高级丹师

Rank: 5Rank: 5

积分
679
发表于 2026-1-27 23:33:15 | 显示全部楼层
day270010678 发表于 2026-1-27 16:43
别提了,昨天晚上心血来潮,重构了他整体框架, 今天调试,  调试了半天还是有错误,都懒得弄了。
...

那个包哥不是重构了一个框架吗?提升了遮罩融合度什么的
回复 支持 反对

使用道具 举报

23

主题

564

帖子

4081

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
4081

万事如意节日勋章

发表于 2026-1-28 03:35:11 | 显示全部楼层
加油楼主!
回复

使用道具 举报

2

主题

71

帖子

687

积分

高级丹师

Rank: 5Rank: 5

积分
687

万事如意节日勋章

发表于 2026-1-28 09:21:13 | 显示全部楼层
gaoyifei 发表于 2026-1-27 23:33
那个包哥不是重构了一个框架吗?提升了遮罩融合度什么的

那是吹逼的你也信。。。营销懂吧
回复 支持 反对

使用道具 举报

2

主题

28

帖子

679

积分

高级丹师

Rank: 5Rank: 5

积分
679
发表于 2026-1-29 00:53:45 | 显示全部楼层
狗蛋 发表于 2026-1-28 09:21
那是吹逼的你也信。。。营销懂吧

差点就心动买了...
回复 支持 反对

使用道具 举报

39

主题

222

帖子

1628

积分

初级丹圣

Rank: 8Rank: 8

积分
1628
发表于 2026-1-30 12:11:59 | 显示全部楼层
狗蛋 发表于 2026-1-28 09:21
那是吹逼的你也信。。。营销懂吧

哪个包哥 发来看看。。
回复 支持 反对

使用道具 举报

48

主题

242

帖子

5386

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
5386
发表于 2026-1-31 22:29:43 | 显示全部楼层
我覺得最需要的是手動上遮照這塊,全世界還沒有高手研究出來怎麼寫嗎?

每次搞這個搞超久....

就是 Add 萬用遮照,常常還有有一些無法遮到,必須人工 Xseg Editor 去手動畫幾張(超花時間.....)

我有想法可是我不知道程式怎麼寫

我的想法就是,竟然 Add 萬用遮照能遮出範圍(我猜範圍座標應該寫在每張照片裡面)是不是能讀取這些座標,然後有一隻程式沿著這些座標走一圈,每10公分標記一個手動畫的點,這樣能快速將指定的照片,上人工遮照,基本上可能微調拉一下就好了,有想法不知道怎麼寫
回复 支持 反对

使用道具 举报

QQ|Archiver|手机版|deepfacelab中文网 |网站地图

GMT+8, 2026-2-8 21:09 , Processed in 0.139884 second(s), 44 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表