|
|

楼主 |
发表于 2026-1-27 16:43:25
|
显示全部楼层
别提了,昨天晚上心血来潮,重构了他整体框架, 今天调试, 调试了半天还是有错误,都懒得弄了。
- Loading XSeg model...
- === ON_INITIALIZE_OPTIONS CALLED ===
- self id: 2126717295248
- Press enter in 2 seconds to override model settings.=== ON_INITIALIZE CALLED ===
- self id: 2126717295248
- Using 3 segmented samples.
- === ONGETPREVIEW CALLED ===
- onGetPreview: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onGetPreview: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onGetPreview: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- === VIEW FUNCTION CALLED ===
- input_tensor id: 2127144431216, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- onGetPreview: I shape: (3, 256, 256, 3), M shape: (3, 256, 256, 3), IM shape: (3, 256, 256, 3)
- onGetPreview: I min/max: 0.000000/1.000000, M min/max: 0.000000/1.000000, IM min/max: 0.000000/0.999058
- process_samples called for src
- process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.976471
- === VIEW FUNCTION CALLED ===
- input_tensor id: 2127144431936, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/0.976471
- input_tensor data sample: [0.22156863 0.21862745 0.23333333 0.24313726 0.22352941]
- process_samples called for dst
- process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.866667
- === VIEW FUNCTION CALLED ===
- input_tensor id: 2127144431936, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/0.866667
- input_tensor data sample: [0.15294118 0.15294118 0.15294118 0.15294118 0.15294118]
- =================== Model Summary ===================
- == ==
- == Model name: XSeg ==
- == ==
- == Current iteration: 123 ==
- == ==
- ==----------------- Model Options -----------------==
- == ==
- == face_type: wf ==
- == pretrain: False ==
- == batch_size: 4 ==
- == pytorch_cuda_available: True ==
- == pytorch_version: 2.9.1+cu130 ==
- == ==
- ==------------------ Running On -------------------==
- == ==
- == Device index: 0 ==
- == Name: NVIDIA GeForce RTX 3050 ==
- == VRAM: 6.00GB ==
- == ==
- =====================================================
- Starting. Press "Enter" to stop training and save model.
- Time Iter Time/Iter Loss Values...
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63210, negative_pixels=133398, positive_ratio=0.321503
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127144432944, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127144431792, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.12258932 0.12264245 0.12273288 0.12257486 0.12219308]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -26.082487/7.937037
- pred_logits sample: [-1.2224133 -1.0619926 -1.3118495 -1.6369269 -2.51067 ]
- target_tensor stats: total_pixels=196608, positive_pixels=63210, negative_pixels=133398, positive_ratio=0.321503
- Total grad_norm: 9.716019e+00, avg: 1.104093e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.263407
- === ONGETPREVIEW CALLED ===[0.2634]
- onGetPreview: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onGetPreview: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onGetPreview: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- === VIEW FUNCTION CALLED ===
- input_tensor id: 2127144431504, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- onGetPreview: I shape: (3, 256, 256, 3), M shape: (3, 256, 256, 3), IM shape: (3, 256, 256, 3)
- onGetPreview: I min/max: 0.000000/1.000000, M min/max: 0.000000/1.000000, IM min/max: 0.000000/0.998625
- process_samples called for src
- process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.976471
- === VIEW FUNCTION CALLED ===
- input_tensor id: 2127144431792, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/0.976471
- input_tensor data sample: [0.22156863 0.21862745 0.23333333 0.24313726 0.22352941]
- process_samples called for dst
- process_samples: sample_tensor shape: torch.Size([4, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.866667
- === VIEW FUNCTION CALLED ===
- input_tensor id: 2127144431792, shape: torch.Size([4, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/0.866667
- input_tensor data sample: [0.15294118 0.15294118 0.15294118 0.15294118 0.15294118]
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.011410/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=68769, negative_pixels=127839, positive_ratio=0.349777
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127144535392, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127144534384, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.011410/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -21.311359/5.924034
- pred_logits sample: [-7.4202623 1.7539611 -4.432145 -5.049247 -5.240492 ]
- target_tensor stats: total_pixels=196608, positive_pixels=68769, negative_pixels=127839, positive_ratio=0.349777
- Total grad_norm: 6.423314e+00, avg: 7.299221e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.227651
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=64904, negative_pixels=131704, positive_ratio=0.330119
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127144534240, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.3203014 0.32011262 0.31642017 0.29747993 0.28607503]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -21.281088/8.497002
- pred_logits sample: [-3.0622835 -1.7201625 -1.9710674 -3.2355402 -3.0791936]
- target_tensor stats: total_pixels=196608, positive_pixels=64904, negative_pixels=131704, positive_ratio=0.330119
- Total grad_norm: 3.317015e+01, avg: 3.769335e-01
- Zero gradients: 14/88 (15.9%)
- Loss: 0.469815
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62948, negative_pixels=133660, positive_ratio=0.320170
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536864, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.29013884 0.28985968 0.2895732 0.28930765 0.28898674]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -20.726892/7.293363
- pred_logits sample: [-2.4902973 -1.8111492 -1.4735903 -2.8097928 -3.127867 ]
- target_tensor stats: total_pixels=196608, positive_pixels=62948, negative_pixels=133660, positive_ratio=0.320170
- Total grad_norm: 1.098472e+01, avg: 1.248264e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.263270
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.990774
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=65615, negative_pixels=130993, positive_ratio=0.333735
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117539888, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/0.990774
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.06192069 0.06084388 0.05979334 0.05928424 0.05830612]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -23.783371/7.119821
- pred_logits sample: [-2.8762927 -1.6264055 -0.98988074 -2.3853555 -2.479313 ]
- target_tensor stats: total_pixels=196608, positive_pixels=65615, negative_pixels=130993, positive_ratio=0.333735
- Total grad_norm: 1.191719e+01, avg: 1.354226e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.296378
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59914, negative_pixels=136694, positive_ratio=0.304738
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117534992, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.42745098 0.42745098 0.43529412 0.38039216 0.46666667]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -22.802631/9.289175
- pred_logits sample: [-3.4657896 -1.158008 -1.7567021 -2.7105498 -4.217543 ]
- target_tensor stats: total_pixels=196608, positive_pixels=59914, negative_pixels=136694, positive_ratio=0.304738
- Total grad_norm: 1.422873e+01, avg: 1.616901e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.382004
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=60038, negative_pixels=136570, positive_ratio=0.305369
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117537008, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540608, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.50262064 0.5055404 0.5037708 0.51130486 0.53210354]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.638235/10.057793
- pred_logits sample: [-4.906348 0.6163085 -1.3778951 -2.8572128 -2.77842 ]
- target_tensor stats: total_pixels=196608, positive_pixels=60038, negative_pixels=136570, positive_ratio=0.305369
- Total grad_norm: 5.369219e+00, avg: 6.101385e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.195395
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=66596, negative_pixels=130012, positive_ratio=0.338725
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117540608, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117535712, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.52460366 0.5244897 0.524363 0.52421945 0.52408665]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -21.231295/9.863961
- pred_logits sample: [-4.5722823 -0.8571365 -1.4108061 -4.0296717 -4.0217266]
- target_tensor stats: total_pixels=196608, positive_pixels=66596, negative_pixels=130012, positive_ratio=0.338725
- Total grad_norm: 8.823583e+00, avg: 1.002680e-01
- Zero gradients: 17/88 (19.3%)
- Loss: 0.280314
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=65776, negative_pixels=130832, positive_ratio=0.334554
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117541184, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.73016024 0.7404815 0.75060666 0.7508073 0.7453999 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.398451/10.207720
- pred_logits sample: [-4.2961097 0.24168685 -0.7255419 -2.3670042 -2.714671 ]
- target_tensor stats: total_pixels=196608, positive_pixels=65776, negative_pixels=130832, positive_ratio=0.334554
- Total grad_norm: 8.700741e+00, avg: 9.887206e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.313794
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.009528/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62885, negative_pixels=133723, positive_ratio=0.319850
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117535280, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.009528/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.9843137 0.9843137 0.9843137 0.9843137 0.9843137]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.099107/9.275981
- pred_logits sample: [-5.9354715 2.48184 -3.4873571 -5.2332025 -5.772358 ]
- target_tensor stats: total_pixels=196608, positive_pixels=62885, negative_pixels=133723, positive_ratio=0.319850
- Total grad_norm: 6.640438e+00, avg: 7.545952e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.221051
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59960, negative_pixels=136648, positive_ratio=0.304972
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117541760, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.33630127 0.32305497 0.307116 0.3292566 0.3842591 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -16.089781/9.791711
- pred_logits sample: [-4.495612 -1.9841919 -2.935329 -3.786987 -3.5490012]
- target_tensor stats: total_pixels=196608, positive_pixels=59960, negative_pixels=136648, positive_ratio=0.304972
- Total grad_norm: 2.765088e+01, avg: 3.142145e-01
- Zero gradients: 13/88 (14.8%)
- Loss: 0.603987
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.005607/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=60896, negative_pixels=135712, positive_ratio=0.309733
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535712, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117533840, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.005607/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.22499394 0.21625811 0.31263733 0.3163157 0.317699 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.114578/8.362134
- pred_logits sample: [-3.8244817 -2.4959428 -2.8394878 -3.6102636 -4.0377254]
- target_tensor stats: total_pixels=196608, positive_pixels=60896, negative_pixels=135712, positive_ratio=0.309733
- Total grad_norm: 8.240419e+00, avg: 9.364112e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.230042
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62055, negative_pixels=134553, positive_ratio=0.315628
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117542336, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.7985813 0.795848 0.79368013 0.79222304 0.7900003 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.357988/7.228970
- pred_logits sample: [-4.1696863 -1.3473691 -0.58398455 -3.9897606 -3.883157 ]
- target_tensor stats: total_pixels=196608, positive_pixels=62055, negative_pixels=134553, positive_ratio=0.315628
- Total grad_norm: 1.233695e+01, avg: 1.401926e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.294917
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62153, negative_pixels=134455, positive_ratio=0.316127
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117533984, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.06908149 0.06904165 0.06914473 0.06926265 0.06937093]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.118107/7.950355
- pred_logits sample: [-3.8110635 -4.100872 -4.1111913 -3.4802969 -4.0880437]
- target_tensor stats: total_pixels=196608, positive_pixels=62153, negative_pixels=134455, positive_ratio=0.316127
- Total grad_norm: 7.727636e+00, avg: 8.781404e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.206417
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=65836, negative_pixels=130772, positive_ratio=0.334859
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536288, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.3332027 0.32920265 0.3213459 0.31719378 0.30544254]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -14.921435/7.857790
- pred_logits sample: [-4.045929 -2.456232 -1.8165385 -3.446359 -3.5477982]
- target_tensor stats: total_pixels=196608, positive_pixels=65836, negative_pixels=130772, positive_ratio=0.334859
- Total grad_norm: 6.278506e+00, avg: 7.134666e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.215464
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63483, negative_pixels=133125, positive_ratio=0.322891
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117533840, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536576, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.90201896 0.90201896 0.90201896 0.90201896 0.90201896]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.289414/7.923834
- pred_logits sample: [-5.1892467 0.3257783 -3.137312 -3.9267967 -2.9589558]
- target_tensor stats: total_pixels=196608, positive_pixels=63483, negative_pixels=133125, positive_ratio=0.322891
- Total grad_norm: 2.001761e+01, avg: 2.274728e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.327865
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=66364, negative_pixels=130244, positive_ratio=0.337545
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117537440, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.93682104 0.9366163 0.9301388 0.9306011 0.92951435]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.635593/9.228088
- pred_logits sample: [-5.3889318 -0.08361167 -2.1326015 -2.2848048 -2.4422824 ]
- target_tensor stats: total_pixels=196608, positive_pixels=66364, negative_pixels=130244, positive_ratio=0.337545
- Total grad_norm: 2.013925e+01, avg: 2.288551e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.356524
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=65618, negative_pixels=130990, positive_ratio=0.333750
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127144432944, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536288, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.6234512 0.62185526 0.6202409 0.6186082 0.6169569 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.993696/5.892333
- pred_logits sample: [-2.4105806 0.32982633 -2.3814206 -1.399349 -2.8512943 ]
- target_tensor stats: total_pixels=196608, positive_pixels=65618, negative_pixels=130990, positive_ratio=0.333750
- Total grad_norm: 1.207343e+01, avg: 1.371981e-01
- Zero gradients: 14/88 (15.9%)
- Loss: 0.295563
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.033946/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=60177, negative_pixels=136431, positive_ratio=0.306076
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.033946/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.5714462 0.5824624 0.58264655 0.57580924 0.57451284]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -20.553726/8.566295
- pred_logits sample: [-3.9655604 0.96089125 -3.0078368 -2.1678395 -2.479184 ]
- target_tensor stats: total_pixels=196608, positive_pixels=60177, negative_pixels=136431, positive_ratio=0.306076
- Total grad_norm: 7.800439e+00, avg: 8.864135e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.214262
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.949539
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=66052, negative_pixels=130556, positive_ratio=0.335958
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/0.949539
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.13139182 0.13866419 0.13650595 0.13696605 0.13724683]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.889837/8.157580
- pred_logits sample: [-2.952438 -2.9505057 -3.1360536 -3.050571 -3.6535916]
- target_tensor stats: total_pixels=196608, positive_pixels=66052, negative_pixels=130556, positive_ratio=0.335958
- Total grad_norm: 5.657471e+00, avg: 6.428944e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.188542
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59883, negative_pixels=136725, positive_ratio=0.304581
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.9339851 0.93063235 0.920338 0.9100436 0.91274273]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.082052/7.269665
- pred_logits sample: [-5.706052 -0.43251267 -5.8534803 -7.1242924 -5.9445167 ]
- target_tensor stats: total_pixels=196608, positive_pixels=59883, negative_pixels=136725, positive_ratio=0.304581
- Total grad_norm: 9.922237e+00, avg: 1.127527e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.271777
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=66281, negative_pixels=130327, positive_ratio=0.337123
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117535424, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.910467 0.9105796 0.90350425 0.8964073 0.8965049 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -19.048122/6.673307
- pred_logits sample: [-6.365427 -2.1181576 -3.0997455 -5.8022437 -3.8753278]
- target_tensor stats: total_pixels=196608, positive_pixels=66281, negative_pixels=130327, positive_ratio=0.337123
- Total grad_norm: 6.779262e+00, avg: 7.703707e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.228261
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62250, negative_pixels=134358, positive_ratio=0.316620
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.40016812 0.4001449 0.4019328 0.4006391 0.39729145]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -19.240149/6.941235
- pred_logits sample: [-3.5946527 -2.404446 -2.034595 -2.8078148 -3.102897 ]
- target_tensor stats: total_pixels=196608, positive_pixels=62250, negative_pixels=134358, positive_ratio=0.316620
- Total grad_norm: 1.018770e+01, avg: 1.157693e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.264548
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.056059/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63742, negative_pixels=132866, positive_ratio=0.324209
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.056059/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.51105714 0.51164067 0.5121992 0.51267946 0.45662424]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -19.424805/7.869545
- pred_logits sample: [-3.8387825 -1.8366293 -2.0311072 -5.2345695 -2.5528834]
- target_tensor stats: total_pixels=196608, positive_pixels=63742, negative_pixels=132866, positive_ratio=0.324209
- Total grad_norm: 5.092747e+00, avg: 5.787213e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.137636
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.070583/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=60911, negative_pixels=135697, positive_ratio=0.309809
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117542192, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.070583/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.7975298 0.7978341 0.79855996 0.7994592 0.80059665]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.442959/8.092695
- pred_logits sample: [-6.1459017 -2.4756172 -4.3615456 -3.950786 -4.515348 ]
- target_tensor stats: total_pixels=196608, positive_pixels=60911, negative_pixels=135697, positive_ratio=0.309809
- Total grad_norm: 7.955581e+00, avg: 9.040433e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.208783
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=60226, negative_pixels=136382, positive_ratio=0.306325
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117538016, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.6816234 0.6811441 0.6863018 0.70137674 0.79480106]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -20.050505/7.682349
- pred_logits sample: [-3.5655038 -1.8527833 -4.715788 -1.7698956 -4.470682 ]
- target_tensor stats: total_pixels=196608, positive_pixels=60226, negative_pixels=136382, positive_ratio=0.306325
- Total grad_norm: 1.282556e+01, avg: 1.457450e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.308620
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000443/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=67241, negative_pixels=129367, positive_ratio=0.342005
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535424, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117539600, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000443/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.2906826 0.29090518 0.2910909 0.29129034 0.29142997]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.146389/7.148095
- pred_logits sample: [-3.1176658 -2.602241 -2.7719784 -3.6554322 -3.2226985]
- target_tensor stats: total_pixels=196608, positive_pixels=67241, negative_pixels=129367, positive_ratio=0.342005
- Total grad_norm: 5.208597e+00, avg: 5.918860e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.197295
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63587, negative_pixels=133021, positive_ratio=0.323420
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117539600, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117533408, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.32651213 0.32723528 0.32737562 0.32758117 0.3278699 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -24.800102/9.366374
- pred_logits sample: [-2.9568644 -2.9865596 -2.1183672 -3.5754726 -4.0290723]
- target_tensor stats: total_pixels=196608, positive_pixels=63587, negative_pixels=133021, positive_ratio=0.323420
- Total grad_norm: 5.289403e+00, avg: 6.010685e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.155098
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62260, negative_pixels=134348, positive_ratio=0.316671
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117539600, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536864, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.77622557 0.77949905 0.7803165 0.77980065 0.78029484]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.465410/8.292643
- pred_logits sample: [-5.1960363 -2.7262805 -4.2124124 -3.4014785 -3.5092165]
- target_tensor stats: total_pixels=196608, positive_pixels=62260, negative_pixels=134348, positive_ratio=0.316671
- Total grad_norm: 1.733326e+01, avg: 1.969689e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.270896
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.007880/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63661, negative_pixels=132947, positive_ratio=0.323797
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117536864, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540896, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.007880/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.9487566 0.9545759 0.96072006 0.9586823 0.9516822 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.762245/8.872600
- pred_logits sample: [-7.0780697 -1.9001844 -7.3066106 -7.5993633 -7.7355614]
- target_tensor stats: total_pixels=196608, positive_pixels=63661, negative_pixels=132947, positive_ratio=0.323797
- Total grad_norm: 9.250301e+00, avg: 1.051171e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.200962
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59623, negative_pixels=136985, positive_ratio=0.303258
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117536864, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117537440, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.14610593 0.1946109 0.24477606 0.26804468 0.26333246]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.081598/7.973622
- pred_logits sample: [-3.2265728 -3.394641 -2.7356813 -2.5273912 -2.807359 ]
- target_tensor stats: total_pixels=196608, positive_pixels=59623, negative_pixels=136985, positive_ratio=0.303258
- Total grad_norm: 2.116366e+01, avg: 2.404961e-01
- Zero gradients: 14/88 (15.9%)
- Loss: 0.355708
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62786, negative_pixels=133822, positive_ratio=0.319346
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117537440, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536288, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.5472278 0.5470247 0.5468248 0.54662937 0.5464415 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.813835/9.649268
- pred_logits sample: [-3.7702944 -2.8623612 -3.6244416 -3.1673868 -3.6599746]
- target_tensor stats: total_pixels=196608, positive_pixels=62786, negative_pixels=133822, positive_ratio=0.319346
- Total grad_norm: 6.757914e+00, avg: 7.679448e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.161846
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=57118, negative_pixels=139490, positive_ratio=0.290517
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.241982/8.196582
- pred_logits sample: [-5.855565 -1.6025399 -6.074429 -6.626479 -5.5634313]
- target_tensor stats: total_pixels=196608, positive_pixels=57118, negative_pixels=139490, positive_ratio=0.290517
- Total grad_norm: 1.313770e+01, avg: 1.492920e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.252659
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.108599/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=66934, negative_pixels=129674, positive_ratio=0.340444
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.108599/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.31287837 0.3132637 0.3129761 0.3132492 0.3135593 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.678344/8.656833
- pred_logits sample: [-2.1171982 -2.3288114 -2.4293106 -4.0685472 -3.7923076]
- target_tensor stats: total_pixels=196608, positive_pixels=66934, negative_pixels=129674, positive_ratio=0.340444
- Total grad_norm: 9.281142e+00, avg: 1.054675e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.215952
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.007893/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63652, negative_pixels=132956, positive_ratio=0.323751
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.007893/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.46717143 0.46717167 0.46717227 0.4692511 0.4536056 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -19.933399/10.427228
- pred_logits sample: [-3.3781598 -3.1043682 -4.1953983 -3.8783824 -4.5258155]
- target_tensor stats: total_pixels=196608, positive_pixels=63652, negative_pixels=132956, positive_ratio=0.323751
- Total grad_norm: 1.586424e+01, avg: 1.802754e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.279551
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62347, negative_pixels=134261, positive_ratio=0.317113
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117536288, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117535136, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.501469/7.382880
- pred_logits sample: [-5.885928 -1.9822763 -5.7978067 -6.279719 -5.901813 ]
- target_tensor stats: total_pixels=196608, positive_pixels=62347, negative_pixels=134261, positive_ratio=0.317113
- Total grad_norm: 6.419612e+00, avg: 7.295014e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.146821
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000958/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=65981, negative_pixels=130627, positive_ratio=0.335597
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535136, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000958/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.779600/9.060302
- pred_logits sample: [-6.6180816 -2.8671558 -7.646466 -7.6430163 -8.011188 ]
- target_tensor stats: total_pixels=196608, positive_pixels=65981, negative_pixels=130627, positive_ratio=0.335597
- Total grad_norm: 4.236301e+00, avg: 4.813978e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.129366
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.060862/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=65192, negative_pixels=131416, positive_ratio=0.331584
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535136, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.060862/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.8448762 0.83817345 0.8356864 0.8310597 0.8385409 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -19.217228/8.068666
- pred_logits sample: [-5.399063 -2.5961206 -5.7274303 -5.5696764 -6.552657 ]
- target_tensor stats: total_pixels=196608, positive_pixels=65192, negative_pixels=131416, positive_ratio=0.331584
- Total grad_norm: 6.170573e+00, avg: 7.012015e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.190160
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59389, negative_pixels=137219, positive_ratio=0.302068
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535136, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117542192, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.54000276 0.5401727 0.5410493 0.54192585 0.5413445 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -20.906250/10.136984
- pred_logits sample: [-5.288657 -0.5613942 -4.808365 -5.148283 -6.4273825]
- target_tensor stats: total_pixels=196608, positive_pixels=59389, negative_pixels=137219, positive_ratio=0.302068
- Total grad_norm: 9.717779e+00, avg: 1.104293e-01
- Zero gradients: 17/88 (19.3%)
- Loss: 0.207772
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=57964, negative_pixels=138644, positive_ratio=0.294820
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117538016, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.454338/10.083261
- pred_logits sample: [-7.375121 -2.1423428 -3.6835415 -4.190499 -3.5363479]
- target_tensor stats: total_pixels=196608, positive_pixels=57964, negative_pixels=138644, positive_ratio=0.294820
- Total grad_norm: 7.362339e+00, avg: 8.366294e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.194175
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=64318, negative_pixels=132290, positive_ratio=0.327138
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536144, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.26033032 0.26178974 0.2643577 0.26182985 0.29657215]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.451447/8.749518
- pred_logits sample: [-3.1394143 -2.3746457 -2.5780208 -2.6517417 -3.294534 ]
- target_tensor stats: total_pixels=196608, positive_pixels=64318, negative_pixels=132290, positive_ratio=0.327138
- Total grad_norm: 6.025170e+00, avg: 6.846784e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.198316
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.130840/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=56826, negative_pixels=139782, positive_ratio=0.289032
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117533408, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.130840/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.5569104 0.5471595 0.5624075 0.61679864 0.66409314]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.332588/8.201318
- pred_logits sample: [-4.1926503 -2.3131046 -1.782809 -4.220693 -4.3083854]
- target_tensor stats: total_pixels=196608, positive_pixels=56826, negative_pixels=139782, positive_ratio=0.289032
- Total grad_norm: 1.092631e+01, avg: 1.241626e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.251830
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=65594, negative_pixels=131014, positive_ratio=0.333628
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542192, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117537872, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.30872753 0.30795506 0.3072505 0.30659503 0.30607665]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.688857/9.875670
- pred_logits sample: [-2.7347832 -2.9977772 -2.4747734 -3.9203231 -3.9806335]
- target_tensor stats: total_pixels=196608, positive_pixels=65594, negative_pixels=131014, positive_ratio=0.333628
- Total grad_norm: 7.661690e+00, avg: 8.706466e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.203311
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=60903, negative_pixels=135705, positive_ratio=0.309769
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117537872, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540896, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.94509804 0.94509804 0.9490196 0.94509804 0.93333334]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.976940/10.455793
- pred_logits sample: [-4.853873 -1.8235066 -6.3976054 -3.7020407 -7.453571 ]
- target_tensor stats: total_pixels=196608, positive_pixels=60903, negative_pixels=135705, positive_ratio=0.309769
- Total grad_norm: 6.020146e+00, avg: 6.841075e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.161017
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.013700/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63809, negative_pixels=132799, positive_ratio=0.324549
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117540896, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117534560, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.013700/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.595974/8.512142
- pred_logits sample: [-5.638851 -2.199562 -5.5557685 -5.906612 -6.0124063]
- target_tensor stats: total_pixels=196608, positive_pixels=63809, negative_pixels=132799, positive_ratio=0.324549
- Total grad_norm: 5.905108e+00, avg: 6.710350e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.152975
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=58898, negative_pixels=137710, positive_ratio=0.299571
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117534560, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117541184, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -14.539489/9.890100
- pred_logits sample: [-6.6866727 -1.7504314 -6.607692 -6.8713923 -6.3957305]
- target_tensor stats: total_pixels=196608, positive_pixels=58898, negative_pixels=137710, positive_ratio=0.299571
- Total grad_norm: 9.108993e+00, avg: 1.035113e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.167791
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.005656/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59339, negative_pixels=137269, positive_ratio=0.301814
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541184, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.005656/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.9796097 0.9801199 0.97778463 0.972542 0.9675691 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.201971/9.204210
- pred_logits sample: [-5.128061 -1.8479347 -6.7860436 -7.2832127 -7.4964623]
- target_tensor stats: total_pixels=196608, positive_pixels=59339, negative_pixels=137269, positive_ratio=0.301814
- Total grad_norm: 6.003107e+00, avg: 6.821712e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.156269
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63789, negative_pixels=132819, positive_ratio=0.324448
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541184, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117537008, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.62337327 0.62494206 0.62651056 0.6280789 0.62964696]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.127758/10.331607
- pred_logits sample: [-3.3882873 -2.0255425 -3.4521842 -3.2518628 -4.02957 ]
- target_tensor stats: total_pixels=196608, positive_pixels=63789, negative_pixels=132819, positive_ratio=0.324448
- Total grad_norm: 1.447163e+01, avg: 1.644503e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.302376
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000198/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63291, negative_pixels=133317, positive_ratio=0.321915
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117537008, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000198/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [1. 1. 1. 1. 1.]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -13.293324/9.662045
- pred_logits sample: [-6.2140203 -1.8821324 -5.8295836 -5.2483406 -6.1711583]
- target_tensor stats: total_pixels=196608, positive_pixels=63291, negative_pixels=133317, positive_ratio=0.321915
- Total grad_norm: 6.417795e+00, avg: 7.292949e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.174915
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62321, negative_pixels=134287, positive_ratio=0.316981
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117537008, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117542336, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.6966744 0.6974533 0.69881487 0.6997276 0.7007255 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.328581/8.967299
- pred_logits sample: [-3.3396568 -2.373651 -2.51014 -3.644245 -4.3425913]
- target_tensor stats: total_pixels=196608, positive_pixels=62321, negative_pixels=134287, positive_ratio=0.316981
- Total grad_norm: 5.134469e+00, avg: 5.834624e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.141017
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62264, negative_pixels=134344, positive_ratio=0.316691
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.14117648 0.14117648 0.14117648 0.14117648 0.14117648]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -19.326881/8.288991
- pred_logits sample: [-2.2640986 -2.780824 -2.2204611 -2.32738 -2.5331128]
- target_tensor stats: total_pixels=196608, positive_pixels=62264, negative_pixels=134344, positive_ratio=0.316691
- Total grad_norm: 6.556057e+00, avg: 7.450065e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.158988
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63798, negative_pixels=132810, positive_ratio=0.324493
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.3963111 0.39642578 0.3965332 0.39688694 0.39699322]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.139322/9.320560
- pred_logits sample: [-2.8763387 -2.7789052 -2.4400127 -2.121132 -2.5112505]
- target_tensor stats: total_pixels=196608, positive_pixels=63798, negative_pixels=132810, positive_ratio=0.324493
- Total grad_norm: 6.363823e+00, avg: 7.231617e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.142143
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=62744, negative_pixels=133864, positive_ratio=0.319132
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536720, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.23519292 0.23541868 0.23526305 0.2343759 0.23503873]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -20.914375/9.933438
- pred_logits sample: [-2.569855 -2.9163275 -2.526288 -3.1561742 -3.4568253]
- target_tensor stats: total_pixels=196608, positive_pixels=62744, negative_pixels=133864, positive_ratio=0.319132
- Total grad_norm: 8.607569e+00, avg: 9.781328e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.164255
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=56452, negative_pixels=140156, positive_ratio=0.287130
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117538016, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.29676616 0.29803535 0.29982874 0.3017616 0.30329573]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.376493/9.682109
- pred_logits sample: [-3.00241 -1.7597618 -1.970201 -3.122077 -4.0058064]
- target_tensor stats: total_pixels=196608, positive_pixels=56452, negative_pixels=140156, positive_ratio=0.287130
- Total grad_norm: 6.598444e+00, avg: 7.498232e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.152219
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.006333/0.979446
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63946, negative_pixels=132662, positive_ratio=0.325246
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536144, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.006333/0.979446
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.36447188 0.35725468 0.34968525 0.34103572 0.3392299 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.276306/10.350447
- pred_logits sample: [-3.110876 -3.76414 -2.9791148 -3.91517 -4.0277023]
- target_tensor stats: total_pixels=196608, positive_pixels=63946, negative_pixels=132662, positive_ratio=0.325246
- Total grad_norm: 8.193271e+00, avg: 9.310535e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.187463
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63232, negative_pixels=133376, positive_ratio=0.321615
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117542336, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117533408, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.29525822 0.2924292 0.2893951 0.28596255 0.28239384]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -17.121223/9.996688
- pred_logits sample: [-2.8377306 -2.0156505 -2.0348973 -2.8039515 -3.2783327]
- target_tensor stats: total_pixels=196608, positive_pixels=63232, negative_pixels=133376, positive_ratio=0.321615
- Total grad_norm: 1.346201e+01, avg: 1.529773e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.234369
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59097, negative_pixels=137511, positive_ratio=0.300583
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117533408, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540032, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.9394344 0.93835163 0.9425199 0.9438328 0.9514084 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -14.167475/10.221355
- pred_logits sample: [-4.0194135 -2.2372093 -5.091132 -5.08241 -5.291009 ]
- target_tensor stats: total_pixels=196608, positive_pixels=59097, negative_pixels=137511, positive_ratio=0.300583
- Total grad_norm: 1.541523e+01, avg: 1.751731e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.262680
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=60720, negative_pixels=135888, positive_ratio=0.308838
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117533408, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117535856, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.43924886 0.43925828 0.4392669 0.43927485 0.43928218]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -19.034407/11.550397
- pred_logits sample: [-3.435771 -2.3059251 -2.2554433 -3.8883805 -4.0604706]
- target_tensor stats: total_pixels=196608, positive_pixels=60720, negative_pixels=135888, positive_ratio=0.308838
- Total grad_norm: 9.875311e+00, avg: 1.122194e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.209333
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59897, negative_pixels=136711, positive_ratio=0.304652
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117538160, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.07971865 0.07947554 0.08606026 0.08255988 0.07539687]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -16.871040/11.374657
- pred_logits sample: [-2.901302 -2.5952477 -3.2703307 -3.2710183 -3.9213095]
- target_tensor stats: total_pixels=196608, positive_pixels=59897, negative_pixels=136711, positive_ratio=0.304652
- Total grad_norm: 9.135140e+00, avg: 1.038084e-01
- Zero gradients: 16/88 (18.2%)
- Loss: 0.205695
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63878, negative_pixels=132730, positive_ratio=0.324900
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117535856, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117541616, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.48235947 0.48235294 0.48235294 0.48235294 0.48235294]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.115614/11.373105
- pred_logits sample: [-4.37724 -3.8814015 -5.0797167 -3.786492 -4.254979 ]
- target_tensor stats: total_pixels=196608, positive_pixels=63878, negative_pixels=132730, positive_ratio=0.324900
- Total grad_norm: 6.408868e+00, avg: 7.282804e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.154247
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/0.982491
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63475, negative_pixels=133133, positive_ratio=0.322851
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540320, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/0.982491
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.4153527 0.41499883 0.41089106 0.40683705 0.3995743 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.218029/10.478106
- pred_logits sample: [-4.087691 -2.7718482 -3.3362787 -3.961798 -4.8355126]
- target_tensor stats: total_pixels=196608, positive_pixels=63475, negative_pixels=133133, positive_ratio=0.322851
- Total grad_norm: 4.474280e+00, avg: 5.084409e-02
- Zero gradients: 16/88 (18.2%)
- Loss: 0.113150
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=61833, negative_pixels=134775, positive_ratio=0.314499
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117535712, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.78351593 0.7835667 0.7836641 0.7838259 0.78577363]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.482409/10.918242
- pred_logits sample: [-4.941795 -0.6911363 -3.8678432 -4.8598986 -4.3533115]
- target_tensor stats: total_pixels=196608, positive_pixels=61833, negative_pixels=134775, positive_ratio=0.314499
- Total grad_norm: 1.374920e+01, avg: 1.562409e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.281596
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=59375, negative_pixels=137233, positive_ratio=0.301997
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540752, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.5256015 0.52060986 0.5186995 0.52241004 0.52920365]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -22.547131/11.043216
- pred_logits sample: [-4.611463 -1.901287 -3.9827065 -4.63077 -3.9644232]
- target_tensor stats: total_pixels=196608, positive_pixels=59375, negative_pixels=137233, positive_ratio=0.301997
- Total grad_norm: 1.129185e+01, avg: 1.283165e-01
- Zero gradients: 15/88 (17.0%)
- Loss: 0.258179
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=63426, negative_pixels=133182, positive_ratio=0.322601
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117540176, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.35548508 0.3568854 0.35450715 0.3524825 0.35229024]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -18.693195/11.868806
- pred_logits sample: [-4.249918 -2.3057885 -1.9677954 -4.7093353 -4.9494405]
- target_tensor stats: total_pixels=196608, positive_pixels=63426, negative_pixels=133182, positive_ratio=0.322601
- Total grad_norm: 5.823107e+00, avg: 6.617167e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.141586
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=58416, negative_pixels=138192, positive_ratio=0.297119
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117539168, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.43878824 0.43494838 0.4271439 0.42232224 0.4230855 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -27.498243/10.141516
- pred_logits sample: [-3.1762288 -2.664098 -3.2043517 -3.190942 -3.2147143]
- target_tensor stats: total_pixels=196608, positive_pixels=58416, negative_pixels=138192, positive_ratio=0.297119
- Total grad_norm: 6.051132e+00, avg: 6.876286e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.130991
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=61145, negative_pixels=135463, positive_ratio=0.311000
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117541616, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117534416, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.3110924 0.30823323 0.30512977 0.30235988 0.3002512 ]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -22.577290/11.847639
- pred_logits sample: [-2.85167 -3.0088475 -1.9843479 -2.9361854 -3.4338117]
- target_tensor stats: total_pixels=196608, positive_pixels=61145, negative_pixels=135463, positive_ratio=0.311000
- Total grad_norm: 4.517135e+00, avg: 5.133108e-02
- Zero gradients: 17/88 (19.3%)
- Loss: 0.116914
- onTrainOneIter: image_tensor shape: torch.Size([3, 3, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor shape: torch.Size([3, 1, 256, 256]), device: cuda:0, min/max: 0.000000/1.000000
- onTrainOneIter: mask_tensor sample: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- onTrainOneIter: total_pixels=196608, positive_pixels=69023, negative_pixels=127585, positive_ratio=0.351069
- === TRAIN FUNCTION CALLED ===
- input_tensor id: 2127117534416, shape: torch.Size([3, 3, 256, 256]), dtype: torch.float32, device: cuda:0
- target_tensor id: 2127117536720, shape: torch.Size([3, 1, 256, 256]), dtype: torch.float32, device: cuda:0
- input_tensor min/max: 0.000000/1.000000
- target_tensor min/max: 0.000000/1.000000
- input_tensor data sample: [0.87912726 0.87912726 0.87912726 0.87912726 0.87912726]
- target_tensor data sample: [0. 0. 0. 0. 0.]
- pred_logits min/max: -15.272973/9.378516
- pred_logits sample: [-4.9603224 -1.193005 -5.6421976 -6.114594 -6.0347657]
- target_tensor stats: total_pixels=196608, positive_pixels=69023, negative_pixels=127585, positive_ratio=0.351069
- Total grad_norm: 4.873687e+00, avg: 5.538280e-02
复制代码 |
|