Choose one or several GPU idxs (separated by comma).
[CPU] : CPU
[0] : Quadro K1200
[0] Which GPU indexes to choose? : 0
0
Press enter in 2 seconds to override model settings.
[3] Autobackup every N hour ( 0..24 ?:help ) : 3
3
[n] Write preview history ( y/n ?:help ) : n
[0] Target iteration : 0
0
[n] Flip faces randomly ( y/n ?:help ) :
n
[8] Batch_size ( ?:help ) : 8
8
[n] Masked training ( y/n ?:help ) : y
[y] Eyes priority ( y/n ?:help ) : y
[y] Uniform yaw distribution of samples ( y/n ?:help ) :
y
[y] Place models and optimizer on GPU ( y/n ?:help ) :
y
[y] Use learning rate dropout ( n/y/cpu ?:help ) :
y
[n] Enable random warp of samples ( y/n ?:help ) :
n
[0.1] GAN power ( 0.0 .. 10.0 ?:help ) :
0.1
[0.0] Face style power ( 0.0..100.0 ?:help ) :
0.0
[0.0] Background style power ( 0.0..100.0 ?:help ) :
0.0
[none] Color transfer for src faceset ( none/rct/lct/mkl/idt/sot ?:help ) :
none
[n] Enable gradient clipping ( y/n ?:help ) :
n
[n] Enable pretraining mode ( y/n ?:help ) :
n
Initializing models: 100%|###############################################################| 7/7 [00:06<00:00, 1.08it/s]
Loading samples: 100%|##############################################################| 799/799 [00:02<00:00, 389.62it/s]
Sort by yaw: 100%|#################################################################| 128/128 [00:00<00:00, 3767.04it/s]
Loading samples: 100%|##############################################################| 464/464 [00:01<00:00, 462.90it/s]
Sort by yaw: 100%|#################################################################| 128/128 [00:00<00:00, 6404.28it/s]
============= Model Summary ==============
== ==
== Model name: 256liae_SAEHD ==
== ==
== Current iteration: 1041024 ==
== ==
==----------- Model Options ------------==
== ==
== resolution: 256 ==
== face_type: wf ==
== models_opt_on_gpu: True ==
== archi: liae-ud ==
== ae_dims: 256 ==
== e_dims: 64 ==
== d_dims: 64 ==
== d_mask_dims: 22 ==
== masked_training: True ==
== eyes_prio: True ==
== uniform_yaw: True ==
== lr_dropout: y ==
== random_warp: False ==
== gan_power: 0.1 ==
== true_face_power: 0.0 ==
== face_style_power: 0.0 ==
== bg_style_power: 0.0 ==
== ct_mode: none ==
== clipgrad: False ==
== pretrain: False ==
== autobackup_hour: 3 ==
== write_preview_history: False ==
== target_iter: 0 ==
== random_flip: False ==
== batch_size: 8 ==
== ==
==------------- Running On -------------==
== ==
== Device index: 0 ==
== Name: Quadro K1200 ==
== VRAM: 4.00GB ==
== ==
==========================================
Starting. Press "Enter" to stop training and save model.
Error: OOM when allocating tensor with shape[3,3,512,2048] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[3,3,512,2048] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node src_dst_opt_1/Select_18 (defined at D:\AI2\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\ops\__init__.py:207) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[node concat_46 (defined at D:\AI2\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\models\Model_SAEHD\Model.py:484) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.