|
楼主 |
发表于 2022-3-4 15:42:37
|
显示全部楼层
colab跑的源代码
报的RAM不足
训练代码
!python run_training.py --num-gpus=1 --data-dir=datasets --config=config-f --dataset=custome_dataset --mirror-augment=true
输出
Local submit - run_dir: results/00000-stylegan2-custome_dataset-1gpu-config-f
dnnlib: Running training.training_loop.training_loop() on localhost...
Streaming data using training.dataset.TFRecordDataset...
tcmalloc: large alloc 4294967296 bytes == 0x55f6ee170000 @ 0x7f13fc4ac001 0x7f13f8f767b5 0x7f13f8fdac00 0x7f13f8fdca9f 0x7f13f9073078 0x55f6e63ab424 0x55f6e63ab120 0x55f6e641fb80 0x55f6e641a66e 0x55f6e63ad36c 0x55f6e63ee7b9 0x55f6e63eb6d4 0x55f6e63ad571 0x55f6e641c633 0x55f6e641a02f 0x55f6e62ebe2b 0x55f6e641c633 0x55f6e641a02f 0x55f6e62ebe2b 0x55f6e641c633 0x55f6e63ac9da 0x55f6e641aeae 0x55f6e63ac9da 0x55f6e641b108 0x55f6e641a02f 0x55f6e62ebe2b 0x55f6e641c633 0x55f6e641a02f 0x55f6e62ebe2b 0x55f6e641c633 0x55f6e63ac9da
tcmalloc: large alloc 4294967296 bytes == 0x55f7ee170000 @ 0x7f13fc4aa1e7 0x7f13f8f76631 0x7f13f8fdacc8 0x7f13f8fdaf87 0x7f13f9072f58 0x55f6e63ab424 0x55f6e63ab120 0x55f6e641fb80 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641bcd4 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641bcd4 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641bcd4 0x55f6e63ac9da 0x55f6e641aeae 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641f2c0 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641bcd4 0x55f6e641a66e 0x55f6e63ad36c 0x55f6e63ee7b9 0x55f6e63eb6d4 0x55f6e63ad571 0x55f6e641c633
tcmalloc: large alloc 4294967296 bytes == 0x55f8eebcc000 @ 0x7f13fc4aa1e7 0x7f13f8f76631 0x7f13f8fdacc8 0x7f13f8fdaf87 0x7f13bb38c235 0x7f13bad0f792 0x7f13bad0fd42 0x7f13bacc8aee 0x55f6e63ab317 0x55f6e63ab120 0x55f6e641f679 0x55f6e63ac9da 0x55f6e641b108 0x55f6e641a1c0 0x55f6e62ebeb0 0x55f6e641c633 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641b108 0x55f6e641a66e 0x55f6e63acaba 0x55f6e641b108 0x55f6e63ac9da 0x55f6e641b108 0x55f6e641a02f 0x55f6e63ad151 0x55f6e63ad571 0x55f6e641c633 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641aeae
Dataset shape = [3, 512, 512]
Dynamic range = [0, 255]
Label size = 0
Constructing networks...
Setting up TensorFlow plugin "fused_bias_act.cu": Preprocessing... Compiling... Loading... Done.
Setting up TensorFlow plugin "upfirdn_2d.cu": Preprocessing... Compiling... Loading... Done.
G Params OutputShape WeightShape
--- --- --- ---
latents_in - (?, 512) -
labels_in - (?, 0) -
lod - () -
dlatent_avg - (512,) -
G_mapping/latents_in - (?, 512) -
G_mapping/labels_in - (?, 0) -
G_mapping/Normalize - (?, 512) -
G_mapping/Dense0 262656 (?, 512) (512, 512)
G_mapping/Dense1 262656 (?, 512) (512, 512)
G_mapping/Dense2 262656 (?, 512) (512, 512)
G_mapping/Dense3 262656 (?, 512) (512, 512)
G_mapping/Dense4 262656 (?, 512) (512, 512)
G_mapping/Dense5 262656 (?, 512) (512, 512)
G_mapping/Dense6 262656 (?, 512) (512, 512)
G_mapping/Dense7 262656 (?, 512) (512, 512)
G_mapping/Broadcast - (?, 16, 512) -
G_mapping/dlatents_out - (?, 16, 512) -
Truncation/Lerp - (?, 16, 512) -
G_synthesis/dlatents_in - (?, 16, 512) -
G_synthesis/4x4/Const 8192 (?, 512, 4, 4) (1, 512, 4, 4)
G_synthesis/4x4/Conv 2622465 (?, 512, 4, 4) (3, 3, 512, 512)
G_synthesis/4x4/ToRGB 264195 (?, 3, 4, 4) (1, 1, 512, 3)
G_synthesis/8x8/Conv0_up 2622465 (?, 512, 8, 8) (3, 3, 512, 512)
G_synthesis/8x8/Conv1 2622465 (?, 512, 8, 8) (3, 3, 512, 512)
G_synthesis/8x8/Upsample - (?, 3, 8, 8) -
G_synthesis/8x8/ToRGB 264195 (?, 3, 8, 8) (1, 1, 512, 3)
G_synthesis/16x16/Conv0_up 2622465 (?, 512, 16, 16) (3, 3, 512, 512)
G_synthesis/16x16/Conv1 2622465 (?, 512, 16, 16) (3, 3, 512, 512)
G_synthesis/16x16/Upsample - (?, 3, 16, 16) -
G_synthesis/16x16/ToRGB 264195 (?, 3, 16, 16) (1, 1, 512, 3)
G_synthesis/32x32/Conv0_up 2622465 (?, 512, 32, 32) (3, 3, 512, 512)
G_synthesis/32x32/Conv1 2622465 (?, 512, 32, 32) (3, 3, 512, 512)
G_synthesis/32x32/Upsample - (?, 3, 32, 32) -
G_synthesis/32x32/ToRGB 264195 (?, 3, 32, 32) (1, 1, 512, 3)
G_synthesis/64x64/Conv0_up 2622465 (?, 512, 64, 64) (3, 3, 512, 512)
G_synthesis/64x64/Conv1 2622465 (?, 512, 64, 64) (3, 3, 512, 512)
G_synthesis/64x64/Upsample - (?, 3, 64, 64) -
G_synthesis/64x64/ToRGB 264195 (?, 3, 64, 64) (1, 1, 512, 3)
G_synthesis/128x128/Conv0_up 1442561 (?, 256, 128, 128) (3, 3, 512, 256)
G_synthesis/128x128/Conv1 721409 (?, 256, 128, 128) (3, 3, 256, 256)
G_synthesis/128x128/Upsample - (?, 3, 128, 128) -
G_synthesis/128x128/ToRGB 132099 (?, 3, 128, 128) (1, 1, 256, 3)
G_synthesis/256x256/Conv0_up 426369 (?, 128, 256, 256) (3, 3, 256, 128)
G_synthesis/256x256/Conv1 213249 (?, 128, 256, 256) (3, 3, 128, 128)
G_synthesis/256x256/Upsample - (?, 3, 256, 256) -
G_synthesis/256x256/ToRGB 66051 (?, 3, 256, 256) (1, 1, 128, 3)
G_synthesis/512x512/Conv0_up 139457 (?, 64, 512, 512) (3, 3, 128, 64)
G_synthesis/512x512/Conv1 69761 (?, 64, 512, 512) (3, 3, 64, 64)
G_synthesis/512x512/Upsample - (?, 3, 512, 512) -
G_synthesis/512x512/ToRGB 33027 (?, 3, 512, 512) (1, 1, 64, 3)
G_synthesis/images_out - (?, 3, 512, 512) -
G_synthesis/noise0 - (1, 1, 4, 4) -
G_synthesis/noise1 - (1, 1, 8, 8) -
G_synthesis/noise2 - (1, 1, 8, 8) -
G_synthesis/noise3 - (1, 1, 16, 16) -
G_synthesis/noise4 - (1, 1, 16, 16) -
G_synthesis/noise5 - (1, 1, 32, 32) -
G_synthesis/noise6 - (1, 1, 32, 32) -
G_synthesis/noise7 - (1, 1, 64, 64) -
G_synthesis/noise8 - (1, 1, 64, 64) -
G_synthesis/noise9 - (1, 1, 128, 128) -
G_synthesis/noise10 - (1, 1, 128, 128) -
G_synthesis/noise11 - (1, 1, 256, 256) -
G_synthesis/noise12 - (1, 1, 256, 256) -
G_synthesis/noise13 - (1, 1, 512, 512) -
G_synthesis/noise14 - (1, 1, 512, 512) -
images_out - (?, 3, 512, 512) -
--- --- --- ---
Total 30276583
D Params OutputShape WeightShape
--- --- --- ---
images_in - (?, 3, 512, 512) -
labels_in - (?, 0) -
512x512/FromRGB 256 (?, 64, 512, 512) (1, 1, 3, 64)
512x512/Conv0 36928 (?, 64, 512, 512) (3, 3, 64, 64)
512x512/Conv1_down 73856 (?, 128, 256, 256) (3, 3, 64, 128)
512x512/Skip 8192 (?, 128, 256, 256) (1, 1, 64, 128)
256x256/Conv0 147584 (?, 128, 256, 256) (3, 3, 128, 128)
256x256/Conv1_down 295168 (?, 256, 128, 128) (3, 3, 128, 256)
256x256/Skip 32768 (?, 256, 128, 128) (1, 1, 128, 256)
128x128/Conv0 590080 (?, 256, 128, 128) (3, 3, 256, 256)
128x128/Conv1_down 1180160 (?, 512, 64, 64) (3, 3, 256, 512)
128x128/Skip 131072 (?, 512, 64, 64) (1, 1, 256, 512)
64x64/Conv0 2359808 (?, 512, 64, 64) (3, 3, 512, 512)
64x64/Conv1_down 2359808 (?, 512, 32, 32) (3, 3, 512, 512)
64x64/Skip 262144 (?, 512, 32, 32) (1, 1, 512, 512)
32x32/Conv0 2359808 (?, 512, 32, 32) (3, 3, 512, 512)
32x32/Conv1_down 2359808 (?, 512, 16, 16) (3, 3, 512, 512)
32x32/Skip 262144 (?, 512, 16, 16) (1, 1, 512, 512)
16x16/Conv0 2359808 (?, 512, 16, 16) (3, 3, 512, 512)
16x16/Conv1_down 2359808 (?, 512, 8, 8) (3, 3, 512, 512)
16x16/Skip 262144 (?, 512, 8, 8) (1, 1, 512, 512)
8x8/Conv0 2359808 (?, 512, 8, 8) (3, 3, 512, 512)
8x8/Conv1_down 2359808 (?, 512, 4, 4) (3, 3, 512, 512)
8x8/Skip 262144 (?, 512, 4, 4) (1, 1, 512, 512)
4x4/MinibatchStddev - (?, 513, 4, 4) -
4x4/Conv 2364416 (?, 512, 4, 4) (3, 3, 513, 512)
4x4/Dense0 4194816 (?, 512) (8192, 512)
Output 513 (?, 1) (512, 1)
scores_out - (?, 1) -
--- --- --- ---
Total 28982849
Building TensorFlow graph...
Initializing logs...
Training for 25000 kimg...
tick 0 kimg 0.1 lod 0.00 minibatch 32 time 3m 22s sec/tick 202.3 sec/kimg 1580.55 maintenance 0.0 gpumem 8.5
Downloading http://d36zk2xti64re0.cloudfront ... ion_v3_features.pkl ... done
tcmalloc: large alloc 4294967296 bytes == 0x55fb44f30000 @ 0x7f13fc4ac001 0x7f13f8f767b5 0x7f13f8fdac00 0x7f13f8fdca9f 0x7f13f9073078 0x55f6e63ab424 0x55f6e63ab120 0x55f6e641fb80 0x55f6e641a66e 0x55f6e63ad36c 0x55f6e63ee7b9 0x55f6e63eb6d4 0x55f6e63ad571 0x55f6e641c633 0x55f6e641a02f 0x55f6e62ebe2b 0x55f6e641c633 0x55f6e63ac9da 0x55f6e641b108 0x55f6e649ea18 0x55f6e649e64f 0x55f6e641b350 0x55f6e641a02f 0x55f6e63acaba 0x55f6e641bcd4 0x55f6e641a02f 0x55f6e63ad36c 0x55f6e63ad571 0x55f6e641c633 0x55f6e641a02f 0x55f6e63acaba
^C |
|