Initializing models: 100%|###############################################################| 5/5 [00:02<00:00, 1.82it/s]
Loaded 15843 packed faces from C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\pretrain_faces
Sort by yaw: 100%|##################################################################| 128/128 [00:00<00:00, 404.98it/s]
Sort by yaw: 100%|##################################################################| 128/128 [00:00<00:00, 402.71it/s]
======================== Model Summary ========================
== ==
== Model name: WF 320 DF-UD_SAEHD ==
== ==
== Current iteration: 1001991 ==
== ==
==---------------------- Model Options ----------------------==
== ==
== resolution: 320 ==
== face_type: wf ==
== models_opt_on_gpu: True ==
== archi: df-ud ==
== ae_dims: 256 ==
== e_dims: 64 ==
== d_dims: 64 ==
== d_mask_dims: 22 ==
== masked_training: True ==
== uniform_yaw: True ==
== lr_dropout: n ==
== random_warp: False ==
== gan_power: 0.0 ==
== true_face_power: 0.0 ==
== face_style_power: 0.0 ==
== bg_style_power: 0.0 ==
== ct_mode: none ==
== clipgrad: False ==
== pretrain: True ==
== autobackup_hour: 0 ==
== write_preview_history: False ==
== target_iter: 0 ==
== random_flip: True ==
== batch_size: 8 ==
== eyes_mouth_prio: False ==
== blur_out_mask: False ==
== adabelief: True ==
== random_hsv_power: 0.0 ==
== gan_patch_size: 40 ==
== gan_dims: 16 ==
== ==
==----------------------- Running On ------------------------==
== ==
== Device index: 0 ==
== Name: NVIDIA GeForce RTX 3060 Laptop GPU ==
== VRAM: 3.41GB ==
== ==
===============================================================
Starting. Press "Enter" to stop training and save model.
Error: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[2048,256,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node Conv2D_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
[[concat_5/concat/_465]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
(1) Resource exhausted: OOM when allocating tensor with shape[2048,256,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node Conv2D_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
Errors may have originated from an input operation.
Input Source operations connected to node Conv2D_28:
Pad_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
decoder_dst/upscale0/conv1/weight/read (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Input Source operations connected to node Conv2D_28:
Pad_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
decoder_dst/upscale0/conv1/weight/read (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Original stack trace for 'Conv2D_28':
File "threading.py", line 884, in _bootstrap
File "threading.py", line 916, in _bootstrap_inner
File "threading.py", line 864, in run
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
debug=debug)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
self.on_initialize()
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 410, in on_initialize
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 221, in forward
x = self.upscale0(z)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 71, in forward
x = self.conv1(x)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 101, in forward
x = tf.nn.conv2d(x, weight, strides, 'VALID', dilations=dilations, data_format=nn.data_format)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper
return target(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 2397, in conv2d
name=name)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 972, in conv2d
data_format=data_format, dilations=dilations, name=name)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal
op_def=op_def)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__
self._traceback = tf_stack.extract_stack_for_node(self._c_op)
Traceback (most recent call last):
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1375, in _do_call
return fn(*args)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1360, in _run_fn
target_list, run_metadata)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1453, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[2048,256,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node Conv2D_28}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
[[concat_5/concat/_465]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
(1) Resource exhausted: OOM when allocating tensor with shape[2048,256,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node Conv2D_28}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 129, in trainerThread
iter, iter_time = model.train_one_iter()
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 474, in train_one_iter
losses = self.onTrainOneIter()
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 774, in onTrainOneIter
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 584, in src_dst_train
self.target_dstm_em:target_dstm_em,
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 968, in run
run_metadata_ptr)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1369, in _do_run
run_metadata)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1394, in _do_call
raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[2048,256,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node Conv2D_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
[[concat_5/concat/_465]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
(1) Resource exhausted: OOM when allocating tensor with shape[2048,256,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node Conv2D_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
Errors may have originated from an input operation.
Input Source operations connected to node Conv2D_28:
Pad_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
decoder_dst/upscale0/conv1/weight/read (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Input Source operations connected to node Conv2D_28:
Pad_28 (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
decoder_dst/upscale0/conv1/weight/read (defined at C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Original stack trace for 'Conv2D_28':
File "threading.py", line 884, in _bootstrap
File "threading.py", line 916, in _bootstrap_inner
File "threading.py", line 864, in run
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
debug=debug)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
self.on_initialize()
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 410, in on_initialize
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 221, in forward
x = self.upscale0(z)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 71, in forward
x = self.conv1(x)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 101, in forward
x = tf.nn.conv2d(x, weight, strides, 'VALID', dilations=dilations, data_format=nn.data_format)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper
return target(*args, **kwargs)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 2397, in conv2d
name=name)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 972, in conv2d
data_format=data_format, dilations=dilations, name=name)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal
op_def=op_def)
File "C:\Users\80426\Downloads\DeepFaceLab\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__
self._traceback = tf_stack.extract_stack_for_node(self._c_op)