请问各位这是代表什么问题?
我之前训练都用 batch 8 都没问题,这次我练新的素材,结果就出现这个报错了
对了,我最近为了尝试Roop ,下载了PYTHON ,好像是3.11版本的,会是造成冲突吗?
而且最近训练时的迭代变慢很多,有时2秒跳一次,有时4-5秒甚至更久才跳2-3次。
Error: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[704,1024,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node gradients/Conv2D_42_grad/Conv2DBackpropFilter (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py:55) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[gradients/AddN_27/_369]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[704,1024,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node gradients/Conv2D_42_grad/Conv2DBackpropFilter (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py:55) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Errors may have originated from an input operation.
Input Source operations connected to node gradients/Conv2D_42_grad/Conv2DBackpropFilter:
Pad_42 (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
Input Source operations connected to node gradients/Conv2D_42_grad/Conv2DBackpropFilter:
Pad_42 (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
Original stack trace for 'gradients/Conv2D_42_grad/Conv2DBackpropFilter':
File "threading.py", line 884, in _bootstrap
File "threading.py", line 916, in _bootstrap_inner
File "threading.py", line 864, in run
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
debug=debug)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
self.on_initialize()
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 511, in on_initialize
gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.src_dst_trainable_weights ) ]
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py", line 55, in tf_gradients
grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True )
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 172, in gradients
unconnected_gradients)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_util.py", line 684, in _GradientsHelper
lambda: grad_fn(op, *out_grads))
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_util.py", line 340, in _MaybeCompile
return grad_fn() # Exit early
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_util.py", line 684, in <lambda>
lambda: grad_fn(op, *out_grads))
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_grad.py", line 606, in _Conv2DGrad
data_format=data_format)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 1131, in conv2d_backprop_filter
name=name)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3536, in _create_op_internal
op_def=op_def)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 1990, in __init__
self._traceback = tf_stack.extract_stack()
...which was originally created as op 'Conv2D_42', defined at:
File "threading.py", line 884, in _bootstrap
[elided 3 identical lines from previous traceback]
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
self.on_initialize()
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 390, in on_initialize
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 179, in forward
m = self.upscalem0(z)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 60, in forward
x = self.conv1(x)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 101, in forward
x = tf.nn.conv2d(x, weight, strides, 'VALID', dilations=dilations, data_format=nn.data_format)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 201, in wrapper
return target(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 2279, in conv2d
name=name)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 972, in conv2d
data_format=data_format, dilations=dilations, name=name)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
Traceback (most recent call last):
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1375, in _do_call
return fn(*args)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1360, in _run_fn
target_list, run_metadata)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1453, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[704,1024,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node gradients/Conv2D_42_grad/Conv2DBackpropFilter}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[gradients/AddN_27/_369]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[704,1024,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node gradients/Conv2D_42_grad/Conv2DBackpropFilter}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 129, in trainerThread
iter, iter_time = model.train_one_iter()
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 474, in train_one_iter
losses = self.onTrainOneIter()
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 741, in onTrainOneIter
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 546, in src_dst_train
self.target_dstm_em:target_dstm_em,
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 968, in run
run_metadata_ptr)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1369, in _do_run
run_metadata)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1394, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[704,1024,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node gradients/Conv2D_42_grad/Conv2DBackpropFilter (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py:55) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[gradients/AddN_27/_369]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[704,1024,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node gradients/Conv2D_42_grad/Conv2DBackpropFilter (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py:55) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Errors may have originated from an input operation.
Input Source operations connected to node gradients/Conv2D_42_grad/Conv2DBackpropFilter:
Pad_42 (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
Input Source operations connected to node gradients/Conv2D_42_grad/Conv2DBackpropFilter:
Pad_42 (defined at C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)
Original stack trace for 'gradients/Conv2D_42_grad/Conv2DBackpropFilter':
File "threading.py", line 884, in _bootstrap
File "threading.py", line 916, in _bootstrap_inner
File "threading.py", line 864, in run
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
debug=debug)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
self.on_initialize()
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 511, in on_initialize
gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.src_dst_trainable_weights ) ]
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\ops\__init__.py", line 55, in tf_gradients
grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True )
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 172, in gradients
unconnected_gradients)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_util.py", line 684, in _GradientsHelper
lambda: grad_fn(op, *out_grads))
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_util.py", line 340, in _MaybeCompile
return grad_fn() # Exit early
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gradients_util.py", line 684, in <lambda>
lambda: grad_fn(op, *out_grads))
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_grad.py", line 606, in _Conv2DGrad
data_format=data_format)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 1131, in conv2d_backprop_filter
name=name)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3536, in _create_op_internal
op_def=op_def)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 1990, in __init__
self._traceback = tf_stack.extract_stack()
...which was originally created as op 'Conv2D_42', defined at:
File "threading.py", line 884, in _bootstrap
[elided 3 identical lines from previous traceback]
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
self.on_initialize()
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 390, in on_initialize
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 179, in forward
m = self.upscalem0(z)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 60, in forward
x = self.conv1(x)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
return self.forward(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 101, in forward
x = tf.nn.conv2d(x, weight, strides, 'VALID', dilations=dilations, data_format=nn.data_format)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 201, in wrapper
return target(*args, **kwargs)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 2279, in conv2d
name=name)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 972, in conv2d
data_format=data_format, dilations=dilations, name=name)
File "C:\Users\des83\Desktop\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
attrs=attr_protos, op_def=op_def)