Full Pipeline (Remove Degradations & Refine Details)
完整的管道(删除降级和细化细节)
General Image
一般图像
Download general_full_v1.ckpt and general_swinir_v1.ckpt to weights/ and run the following command.
将general_full_v1.ckpt和general_swinir_v1.ckpt下载到weights/并运行以下命令。
Remove the brackets to enable tiled sampling. If you are confused about where the reload_swinir option came from, please refer to the degradation details.
括号内以启用分割采样。 如果您对reload_swinir选项的来源感到困惑,请参阅降级详细信息。
Face Image
面部图像
The face_full_v1.ckpt will be downloaded from HuggingFace automatically.
face_full_v1.ckpt将自动从HuggingFace下载。
Latent Image Guidance (Quality-fidelity trade-off)
潜像引导(质量-保真度权衡)
Latent image guidance is used to achieve a trade-off bwtween quality and fidelity. We default to closing it since we prefer quality rather than fidelity. Here is an example:
潜像引导用于实现质量和保真度之间的折衷。 我们默认关闭它,因为我们更喜欢质量而不是保真度。 下面是一个例子:
You will see that the results become more smooth.
你会看到结果变得更加平滑。
Only Stage1 Model (Remove Degradations)
仅第1阶段模型(删除降解)
Download general_swinir_v1.ckpt, face_swinir_v1.ckpt for general, face image respectively, and run the following command.
分别下载general、face image的general_swinir_v1.ckpt、face_swinir_v1.ckpt,运行以下命令。
Since the proposed two-stage pipeline is very flexible, you can utilize other awesome models to remove degradations instead of SwinIR and then leverage the Stable Diffusion to refine details.
由于建议的两阶段管道非常灵活,您可以利用其他出色的模型来消除退化,而不是SwinIR,然后利用稳定扩散来细化细节。
# step1: Use other models to remove degradations and save results in [img_dir_path].
# step1:使用其他模型删除降级并将结果保存在[img_dir_path]中。
# step2: Refine details of step1 outputs.
# step2:细化step1输出的细节。
執行軟件時出現以下錯誤
WARNING: Pretrained weights (e:\ai\diffbir\weights\open_clip_pytorch_model.bin) not found for model vit-h-14.available pretrained tags (['laion2b_s32b_b79k'].
請問 紅字部分路徑能修改嗎 ?
懇請大佬能指點迷津, 感謝您