deepfacelab中文网

 找回密码
 立即注册(仅限QQ邮箱)
楼主: 滚石

liae结构的迪丽热巴万能模型

  [复制链接]

0

主题

5

帖子

83

积分

高级丹童

Rank: 2

积分
83
发表于 2023-12-23 16:04:24 | 显示全部楼层
用了这个模型出现这个情况有知道怎么弄吗

==                                                   ==
=======================================================
Starting. Press "Enter" to stop training and save model.
Error: 2 root error(s) found.
  (0) Resource exhausted: OOM when allocating tensor with shape[2048,512,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Conv2D_43 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

         [[concat_17/concat/_1335]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

  (1) Resource exhausted: OOM when allocating tensor with shape[2048,512,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Conv2D_43 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

0 successful operations.
0 derived errors ignored.

Errors may have originated from an input operation.
Input Source operations connected to node Conv2D_43:
decoder/upscale1/conv1/weight/read (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Pad_47 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)

Input Source operations connected to node Conv2D_43:
decoder/upscale1/conv1/weight/read (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Pad_47 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)

Original stack trace for 'Conv2D_43':
  File "threading.py", line 884, in _bootstrap
  File "threading.py", line 916, in _bootstrap_inner
  File "threading.py", line 864, in run
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
    debug=debug)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
    self.on_initialize()
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 425, in on_initialize
    gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 223, in forward
    x = self.upscale1(x)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 71, in forward
    x = self.conv1(x)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
    return self.forward(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 101, in forward
    x = tf.nn.conv2d(x, weight, strides, 'VALID', dilations=dilations, data_format=nn.data_format)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper
    return target(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 2397, in conv2d
    name=name)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 972, in conv2d
    data_format=data_format, dilations=dilations, name=name)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
    attrs=attr_protos, op_def=op_def)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal
    op_def=op_def)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__
    self._traceback = tf_stack.extract_stack_for_node(self._c_op)

Traceback (most recent call last):
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1375, in _do_call
    return fn(*args)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1360, in _run_fn
    target_list, run_metadata)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1453, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
  (0) Resource exhausted: OOM when allocating tensor with shape[2048,512,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[{{node Conv2D_43}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

         [[concat_17/concat/_1335]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

  (1) Resource exhausted: OOM when allocating tensor with shape[2048,512,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[{{node Conv2D_43}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

0 successful operations.
0 derived errors ignored.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 129, in trainerThread
    iter, iter_time = model.train_one_iter()
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 474, in train_one_iter
    losses = self.onTrainOneIter()
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 774, in onTrainOneIter
    src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 584, in src_dst_train
    self.target_dstm_em:target_dstm_em,
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 968, in run
    run_metadata_ptr)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run
    feed_dict_tensor, options, run_metadata)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1369, in _do_run
    run_metadata)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1394, in _do_call
    raise type(e)(node_def, op, message)  # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
  (0) Resource exhausted: OOM when allocating tensor with shape[2048,512,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Conv2D_43 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

         [[concat_17/concat/_1335]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

  (1) Resource exhausted: OOM when allocating tensor with shape[2048,512,3,3] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Conv2D_43 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:101) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

0 successful operations.
0 derived errors ignored.

Errors may have originated from an input operation.
Input Source operations connected to node Conv2D_43:
decoder/upscale1/conv1/weight/read (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Pad_47 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)

Input Source operations connected to node Conv2D_43:
decoder/upscale1/conv1/weight/read (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:61)
Pad_47 (defined at D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87)

Original stack trace for 'Conv2D_43':
  File "threading.py", line 884, in _bootstrap
  File "threading.py", line 916, in _bootstrap_inner
  File "threading.py", line 864, in run
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
    debug=debug)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
    self.on_initialize()
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 425, in on_initialize
    gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 223, in forward
    x = self.upscale1(x)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 71, in forward
    x = self.conv1(x)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
    return self.forward(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 101, in forward
    x = tf.nn.conv2d(x, weight, strides, 'VALID', dilations=dilations, data_format=nn.data_format)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper
    return target(*args, **kwargs)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 2397, in conv2d
    name=name)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 972, in conv2d
    data_format=data_format, dilations=dilations, name=name)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
    attrs=attr_protos, op_def=op_def)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal
    op_def=op_def)
  File "D:\de\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__
    self._traceback = tf_stack.extract_stack_for_node(self._c_op)

回复 支持 反对

使用道具 举报

0

主题

1

帖子

166

积分

高级丹童

Rank: 2

积分
166
发表于 2023-12-24 13:56:40 | 显示全部楼层
赚灵石中,希望早点得到
回复 支持 反对

使用道具 举报

5

主题

17

帖子

123

积分

高级丹童

Rank: 2

积分
123
发表于 2023-12-24 20:57:04 | 显示全部楼层
这个可以作为直播模型训练吗?
回复 支持 反对

使用道具 举报

4

主题

27

帖子

252

积分

初级丹师

Rank: 3Rank: 3

积分
252
发表于 2023-12-27 00:57:28 | 显示全部楼层
在训练时没有 true_face_power 这项
回复 支持 反对

使用道具 举报

1

主题

2

帖子

25

积分

初级丹童

Rank: 1

积分
25
发表于 2023-12-27 13:59:08 | 显示全部楼层
WinKK 发表于 2022-4-10 06:53
这个模型真是太牛了。
而且,用这个做基础练其他人的,竟然非常快,底子真是好啊 ...

怎么用这个做基础炼其他人的,?我不太会呢
回复 支持 反对

使用道具 举报

14

主题

141

帖子

2719

积分

初级丹圣

Rank: 8Rank: 8

积分
2719

万事如意节日勋章

发表于 2023-12-28 11:02:33 | 显示全部楼层
我卡着 Initializing models 不会动
要怎么设定呢?
回复 支持 反对

使用道具 举报

0

主题

4

帖子

598

积分

高级丹师

Rank: 5Rank: 5

积分
598

万事如意节日勋章

发表于 2023-12-28 21:30:23 | 显示全部楼层
厉害啊。
回复

使用道具 举报

1

主题

62

帖子

1872

积分

初级丹圣

Rank: 8Rank: 8

积分
1872

万事如意节日勋章

发表于 2023-12-29 10:05:04 | 显示全部楼层
水贴赚零食
回复 支持 反对

使用道具 举报

1

主题

62

帖子

1872

积分

初级丹圣

Rank: 8Rank: 8

积分
1872

万事如意节日勋章

发表于 2023-12-29 10:06:19 | 显示全部楼层
201288255 发表于 2023-12-23 16:04
用了这个模型出现这个情况有知道怎么弄吗

==                                                   ==

OOM  爆显存了吧   改低一点设置吧
回复 支持 反对

使用道具 举报

2

主题

31

帖子

632

积分

高级丹师

Rank: 5Rank: 5

积分
632

万事如意节日勋章

发表于 2023-12-30 16:41:48 | 显示全部楼层
为啥我把npy全都拷贝进model文件夹后,不管执行训练还是应用,全都是从纯黑开始的呢,就像白丹一样(囧。
确认关闭了启用预训练的,用的也是默认参数
回复 支持 反对

使用道具 举报

QQ|Archiver|手机版|deepfacelab中文网 |网站地图

GMT+8, 2024-11-24 04:23 , Processed in 0.275192 second(s), 42 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表