deepfacelab中文网

 找回密码
 立即注册(仅限QQ邮箱)
楼主: 滚石

DFL2.0_WF_320_DF-UD_1kk_免费预训练的超级仙丹

  [复制链接]

0

主题

2

帖子

10

积分

初级丹童

Rank: 1

积分
10
发表于 2021-9-27 19:03:11 | 显示全部楼层
感谢分享
回复

使用道具 举报

0

主题

3

帖子

30

积分

初级丹童

Rank: 1

积分
30
发表于 2021-9-27 20:51:43 | 显示全部楼层
谢谢分享
回复

使用道具 举报

6

主题

68

帖子

395

积分

初级丹师

Rank: 3Rank: 3

积分
395
发表于 2021-9-27 23:32:23 | 显示全部楼层
要是下面那个数值由256变得更高一点就好了
回复 支持 反对

使用道具 举报

0

主题

62

帖子

1129

积分

初级丹圣

Rank: 8Rank: 8

积分
1129
发表于 2021-9-28 09:14:22 | 显示全部楼层
感谢分享
回复

使用道具 举报

0

主题

2

帖子

14

积分

初级丹童

Rank: 1

积分
14
发表于 2021-9-28 10:35:41 | 显示全部楼层
2222222222222222222222222222222222222222
回复 支持 反对

使用道具 举报

0

主题

2

帖子

14

积分

初级丹童

Rank: 1

积分
14
发表于 2021-9-28 10:36:10 | 显示全部楼层
2333333333333333333333
回复 支持 反对

使用道具 举报

0

主题

16

帖子

84

积分

高级丹童

Rank: 2

积分
84
发表于 2021-9-28 12:11:39 | 显示全部楼层
感谢感谢
回复

使用道具 举报

6

主题

137

帖子

1493

积分

初级丹圣

Rank: 8Rank: 8

积分
1493

万事如意节日勋章

发表于 2021-9-28 17:42:26 | 显示全部楼层
感谢大佬分享 新手刚开始学 下载来试试
回复 支持 反对

使用道具 举报

6

主题

137

帖子

1493

积分

初级丹圣

Rank: 8Rank: 8

积分
1493

万事如意节日勋章

发表于 2021-9-28 19:36:06 | 显示全部楼层
我的显卡是1050ti ,用的训练模型来自 DFL2.0_WF_320_DF-UD_1kk_免费预训练的超级仙丹,我是下载后直接解压在model文件夹。在运行 6) train SAEHD.bat之后,出现了下方报错,有没有大佬帮我看看是在回事?

Running trainer.

Choose one of saved models, or enter a name to create a new model.
[r] : rename
[d] : delete

[0] : WF 320 DF-UD - latest
:
0
Loading WF 320 DF-UD_SAEHD model...

Choose one or several GPU idxs (separated by comma).

[CPU] : CPU
  [0] : GeForce GTX 1050 Ti

[0] Which GPU indexes to choose? :
0

Initializing models: 100%|###############################################################| 5/5 [00:06<00:00,  1.37s/it]
Loaded 15843 packed faces from E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\pretrain_faces
Sort by yaw: 100%|#######################################################################################################################################################################################| 128/128 [00:00<00:00, 212.39it/s]
Sort by yaw: 100%|#######################################################################################################################################################################################| 128/128 [00:00<00:00, 214.51it/s]
================ Model Summary =================
==                                            ==
==            Model name: WF 320 DF-UD_SAEHD  ==
==                                            ==
==     Current iteration: 1001991             ==
==                                            ==
==-------------- Model Options ---------------==
==                                            ==
==            resolution: 320                 ==
==             face_type: wf                  ==
==     models_opt_on_gpu: True                ==
==                 archi: df-ud               ==
==               ae_dims: 256                 ==
==                e_dims: 64                  ==
==                d_dims: 64                  ==
==           d_mask_dims: 22                  ==
==       masked_training: True                ==
==           uniform_yaw: True                ==
==            lr_dropout: n                   ==
==           random_warp: False               ==
==             gan_power: 0.0                 ==
==       true_face_power: 0.0                 ==
==      face_style_power: 0.0                 ==
==        bg_style_power: 0.0                 ==
==               ct_mode: none                ==
==              clipgrad: False               ==
==              pretrain: True                ==
==       autobackup_hour: 0                   ==
== write_preview_history: False               ==
==           target_iter: 0                   ==
==           random_flip: True                ==
==            batch_size: 8                   ==
==       eyes_mouth_prio: False               ==
==             adabelief: True                ==
==        gan_patch_size: 40                  ==
==              gan_dims: 16                  ==
==                                            ==
==---------------- Running On ----------------==
==                                            ==
==          Device index: 0                   ==
==                  Name: GeForce GTX 1050 Ti ==
==                  VRAM: 2.93GB              ==
==                                            ==
================================================
Starting. Press "Enter" to stop training and save model.
Error: OOM when allocating tensor with shape[8,64,160,160] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Add (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:107) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[node concat_3 (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py:527) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.


Caused by op 'Add', defined at:
  File "threading.py", line 884, in _bootstrap
  File "threading.py", line 916, in _bootstrap_inner
  File "threading.py", line 864, in run
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
    debug=debug)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
    self.on_initialize()
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 376, in on_initialize
    gpu_src_code     = self.inter(self.encoder(gpu_warped_src))
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 89, in forward
    x = nn.flatten(self.down1(x))
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 52, in forward
    x = down(x)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 32, in forward
    x = self.conv1(x)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 107, in forward
    x = tf.add(x, bias)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 365, in add
    "Add", x=x, y=y, name=name)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper
    op_def=op_def)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
    return func(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3300, in create_op
    op_def=op_def)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 1801, in __init__
    self._traceback = tf_stack.extract_stack()

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[8,64,160,160] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Add (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:107) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[node concat_3 (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py:527) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.


Traceback (most recent call last):
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call
    return fn(*args)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1319, in _run_fn
    options, feed_dict, fetch_list, target_list, run_metadata)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1407, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[8,64,160,160] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[{{node Add}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[{{node concat_3}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.


During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\mainscripts\Trainer.py", line 129, in trainerThread
    iter, iter_time = model.train_one_iter()
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\ModelBase.py", line 474, in train_one_iter
    losses = self.onTrainOneIter()
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 744, in onTrainOneIter
    src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 549, in src_dst_train
    self.target_dstm_em:target_dstm_em,
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 929, in run
    run_metadata_ptr)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run
    feed_dict_tensor, options, run_metadata)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run
    run_metadata)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[8,64,160,160] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Add (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:107) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[node concat_3 (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py:527) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.


Caused by op 'Add', defined at:
  File "threading.py", line 884, in _bootstrap
  File "threading.py", line 916, in _bootstrap_inner
  File "threading.py", line 864, in run
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread
    debug=debug)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__
    self.on_initialize()
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 376, in on_initialize
    gpu_src_code     = self.inter(self.encoder(gpu_warped_src))
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 89, in forward
    x = nn.flatten(self.down1(x))
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 52, in forward
    x = down(x)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 32, in forward
    x = self.conv1(x)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
    return self.forward(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 107, in forward
    x = tf.add(x, bias)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 365, in add
    "Add", x=x, y=y, name=name)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper
    op_def=op_def)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
    return func(*args, **kwargs)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3300, in create_op
    op_def=op_def)
  File "E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 1801, in __init__
    self._traceback = tf_stack.extract_stack()

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[8,64,160,160] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Add (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:107) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[node concat_3 (defined at E:\DEEP\DeepFaceLab\DeepFaceLab_NVIDIA_up_to_RTX2080Ti\_internal\DeepFaceLab\models\Model_SAEHD\Model.py:527) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.


期待大佬的解答
回复 支持 反对

使用道具 举报

2

主题

125

帖子

882

积分

禁止访问

积分
882
发表于 2021-9-28 21:06:28 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
回复 支持 反对

使用道具 举报

QQ|Archiver|手机版|deepfacelab中文网 |网站地图

GMT+8, 2024-11-28 04:37 , Processed in 0.175800 second(s), 41 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表