|
楼主 |
发表于 2024-3-26 16:41:50
|
显示全部楼层
[256] 分辨率 Resolution ( 128-640 ?:help ) : 320
320
[wf] Face type ( h/mf/f/wf/head ?:help ) :
wf
[4] 批量大小 ( 2-16 ?:help ) :
4
[n] 启用预训练模式 Enable pretraining mode(请留意预训练文件夹,该模式与正训的算法是不同的) ( y/n ) :
n
Error: Dimensions must be equal, but are 10000 and 6400 for '{{node MatMul}} = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false](Reshape_60, ffa_XSeg_XSeg/dense1/weight/read)' with input shapes: [?,10000], [6400,800].
Traceback (most recent call last):
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\mainscripts\Trainer.py", line 58, in trainerThread
debug=debug)
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\models\Model_XSeg\Model.py", line 17, in __init__
super().__init__(*args, **kwargs) # 调用父类的初始化函数
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\models\ModelBase.py", line 204, in __init__
self.on_initialize()
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\models\Model_XSeg\Model.py", line 116, in on_initialize
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\facelib\XSegNet.py", line 88, in flow
return self.model(x, pretrain=pretrain)
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\core\leras\models\ModelBase.py", line 117, in __call__
return self.forward(*args, **kwargs)
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\core\leras\models\XSeg.py", line 125, in forward
x = self.dense1(x)
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\core\leras\layers\LayerBase.py", line 14, in __call__
return self.forward(*args, **kwargs)
File "E:\DFL-MVE-SN-1.9.3\_internal\DeepFaceLab_old\core\leras\layers\Dense.py", line 66, in forward
x = tf.matmul(x, weight)
File "E:\DFL-MVE-SN-1.9.3\_internal\python-3.7.16\lib\site-packages\tensorflow\python\util\traceback_utils.py", line 153, in error_handler
raise e.with_traceback(filtered_tb) from None
File "E:\DFL-MVE-SN-1.9.3\_internal\python-3.7.16\lib\site-packages\tensorflow\python\framework\ops.py", line 1969, in _create_c_op
raise ValueError(e.message)
ValueError: Dimensions must be equal, but are 10000 and 6400 for '{{node MatMul}} = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false](Reshape_60, ffa_XSeg_XSeg/dense1/weight/read)' with input shapes: [?,10000], [6400,800].
我找不到在哪能控制10000这个变量。从脚本文件来看,命名写的是 [800,6400], [6400,800] 吧 |
|