|
|
星级打分
平均分:NAN 参与人数:0 我的评分:未评
- [DEBUG] nn.tf_sess is None,需要创建新 session
- [TIMING] ▶ 创建 TensorFlow session
- [TIMING] ◀ 创建 TensorFlow session 耗时: 526.51ms
- Press enter in 2 seconds to override model settings.[DEBUG] nn.tf_sess 已存在,重用现有 session
- [DEBUG] nn.tf_sess 已存在,重用现有 session
- [TIMING] ▶ 构建 XSeg 模型
- [TIMING] ◀ 构建 XSeg 模型 耗时: 0.00ms
- [TIMING] ▶ 获取模型权重
- [TIMING] ◀ 获取模型权重 耗时: 477.68ms
- [TIMING] ▶ 初始化优化器
- [TIMING] ◀ 初始化优化器 耗时: 858.79ms
- [TIMING] ▶ 加载/初始化权重
- [DEBUG] 尝试加载权重: D:\AI\Deepfacelab30\workspace\model\XSeg_256_opt.npy
- [DEBUG] load_weights(D:\AI\Deepfacelab30\workspace\model\XSeg_256_opt.npy) 开始
- [TIMING] ▶ 读取权重文件
- [TIMING] ◀ 读取权重文件 耗时: 475.26ms
- [TIMING] ▶ 准备权重 tuples
- [TIMING] ◀ 准备权重 tuples 耗时: 0.00ms
- [TIMING] ▶ batch_set_value
- [DEBUG] batch_set_value() 开始,tuples 数量: 223
- [TIMING] ▶ 创建 assign_ops
- [TIMING] ◀ 创建 assign_ops 耗时: 149.95ms
- [TIMING] ▶ nn.tf_sess.run(assign_ops)
- [TIMING] ◀ nn.tf_sess.run(assign_ops) 耗时: 280.37ms
- [DEBUG] batch_set_value() 完成
- [TIMING] ◀ batch_set_value 耗时: 430.32ms
- [DEBUG] load_weights() 完成
- [DEBUG] 尝试加载权重: D:\AI\Deepfacelab30\workspace\model\XSeg_256.npy
- [DEBUG] load_weights(D:\AI\Deepfacelab30\workspace\model\XSeg_256.npy) 开始
- [TIMING] ▶ 读取权重文件
- [TIMING] ◀ 读取权重文件 耗时: 670.27ms
- [TIMING] ▶ 准备权重 tuples
- [TIMING] ◀ 准备权重 tuples 耗时: 0.00ms
- [TIMING] ▶ batch_set_value
- [DEBUG] batch_set_value() 开始,tuples 数量: 222
- [TIMING] ▶ 创建 assign_ops
- [TIMING] ◀ 创建 assign_ops 耗时: 143.68ms
- [TIMING] ▶ nn.tf_sess.run(assign_ops)
- [TIMING] ◀ nn.tf_sess.run(assign_ops) 耗时: 271.30ms
- [DEBUG] batch_set_value() 完成
- [TIMING] ◀ batch_set_value 耗时: 414.97ms
- [DEBUG] load_weights() 完成
- [TIMING] ◀ 加载/初始化权重 耗时: 1990.82ms
- [DEBUG] XSegNet.__init__() 完成
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- Loading samples: 0it [00:00, ?it/s]
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- Loading samples: 100%|############################################################| 2069/2069 [00:10<00:00, 192.56it/s]
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- Filtering: 100%|##################################################################| 2069/2069 [00:04<00:00, 491.57it/s]
- Using 11 segmented samples.
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- [DEBUG] XSegNet.__init__() 开始
- ================ Model Summary =================
- == ==
- == Model name: XSeg ==
- == ==
- == Current iteration: 11546686 ==
- == ==
- ==-------------- Model Options ---------------==
- == ==
- == face_type: wf ==
- == batch_size: 4 ==
- == pretrain: False ==
- == ==
- ==---------------- Running On ----------------==
- == ==
- == Device index: 0 ==
- == Name: NVIDIA GeForce RTX 3050 ==
- == VRAM: 3.43GB ==
- == ==
- ================================================
- Starting. Press "Enter" to stop training and save model.
- ================================================================================
- 开始训练迭代 #11546686
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 20.02ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 5474.69ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 5474.69ms
- [DEBUG] 损失: 0.0209
- [TIMING] ◀ model.train_one_iter() 耗时: 5494.71ms
- [TIMING] ◀ 训练迭代总时间 耗时: 5494.71ms
- 迭代 #11546687 完成,耗时: 5494.71ms
- ================================================================================
- [10:19:26][#11546687][5494ms][0.0209]
- ================================================================================
- 开始训练迭代 #11546687
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 15.90ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 2290.56ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 2290.56ms
- [DEBUG] 损失: 0.0188
- [TIMING] ◀ model.train_one_iter() 耗时: 2322.21ms
- [TIMING] ◀ 训练迭代总时间 耗时: 2337.98ms
- 迭代 #11546688 完成,耗时: 2322.21ms
- ================================================================================
- [10:19:29][#11546688][2322ms][0.0188]
- ================================================================================
- 开始训练迭代 #11546688
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 143.49ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 31.82ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 493.01ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 668.24ms
- [DEBUG] 损失: 0.0179
- [TIMING] ◀ model.train_one_iter() 耗时: 907.09ms
- [TIMING] ◀ 训练迭代总时间 耗时: 954.32ms
- 迭代 #11546689 完成,耗时: 891.84ms
- ================================================================================
- [10:19:30][#11546689][0891ms][0.0179]
- ================================================================================
- 开始训练迭代 #11546689
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 173.48ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 47.86ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 284.63ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 523.61ms
- [DEBUG] 损失: 0.0260
- [TIMING] ◀ model.train_one_iter() 耗时: 840.03ms
- [TIMING] ◀ 训练迭代总时间 耗时: 871.75ms
- 迭代 #11546690 完成,耗时: 808.24ms
- ================================================================================
- [10:19:31][#11546690][0808ms][0.0260]
- ================================================================================
- 开始训练迭代 #11546690
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 47.40ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 15.69ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 286.07ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 396.81ms
- [DEBUG] 损失: 0.1187
- [TIMING] ◀ model.train_one_iter() 耗时: 540.12ms
- [TIMING] ◀ 训练迭代总时间 耗时: 572.00ms
- 迭代 #11546691 完成,耗时: 523.99ms
- ================================================================================
- [10:19:32][#11546691][0523ms][0.1187]
- ================================================================================
- 开始训练迭代 #11546691
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 47.78ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 16.16ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 285.10ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 459.45ms
- [DEBUG] 损失: 0.0194
- [TIMING] ◀ model.train_one_iter() 耗时: 602.22ms
- [TIMING] ◀ 训练迭代总时间 耗时: 617.99ms
- 迭代 #11546692 完成,耗时: 586.14ms
- ================================================================================
- [10:19:33][#11546692][0586ms][0.0194]
- ================================================================================
- 开始训练迭代 #11546692
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 95.40ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 16.07ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 280.33ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 533.54ms
- [DEBUG] 损失: 0.0447
- [TIMING] ◀ model.train_one_iter() 耗时: 692.93ms
- [TIMING] ◀ 训练迭代总时间 耗时: 709.09ms
- 迭代 #11546693 完成,耗时: 677.12ms
- ================================================================================
- [10:19:33][#11546693][0677ms][0.0447]
- ================================================================================
- 开始训练迭代 #11546693
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 9.50ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 248.04ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 248.04ms
- [DEBUG] 损失: 0.0182
- [TIMING] ◀ model.train_one_iter() 耗时: 273.63ms
- [TIMING] ◀ 训练迭代总时间 耗时: 273.63ms
- 迭代 #11546694 完成,耗时: 273.63ms
- ================================================================================
- [10:19:34][#11546694][0273ms][0.0182]
- ================================================================================
- 开始训练迭代 #11546694
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 0.00ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 253.41ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 253.41ms
- [DEBUG] 损失: 0.0754
- [TIMING] ◀ model.train_one_iter() 耗时: 253.41ms
- [TIMING] ◀ 训练迭代总时间 耗时: 253.41ms
- 迭代 #11546695 完成,耗时: 253.41ms
- ================================================================================
- [10:19:34][#11546695][0253ms][0.0754]
- ================================================================================
- 开始训练迭代 #11546695
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 15.69ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 253.66ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 253.66ms
- [DEBUG] 损失: 0.0190
- [TIMING] ◀ model.train_one_iter() 耗时: 269.35ms
- [TIMING] ◀ 训练迭代总时间 耗时: 269.35ms
- 迭代 #11546696 完成,耗时: 269.35ms
- ================================================================================
- [10:19:34][#11546696][0269ms][0.0190]
- ================================================================================
- 开始训练迭代 #11546696
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 16.11ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 254.67ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 254.67ms
- [DEBUG] 损失: 0.0185
- [TIMING] ◀ model.train_one_iter() 耗时: 270.78ms
- [TIMING] ◀ 训练迭代总时间 耗时: 270.78ms
- 迭代 #11546697 完成,耗时: 270.78ms
- ================================================================================
- [10:19:34][#11546697][0270ms][0.0185]
- ================================================================================
- 开始训练迭代 #11546697
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 17.64ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 252.90ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 252.90ms
- [DEBUG] 损失: 0.0537
- [TIMING] ◀ model.train_one_iter() 耗时: 270.55ms
- [TIMING] ◀ 训练迭代总时间 耗时: 270.55ms
- 迭代 #11546698 完成,耗时: 270.55ms
- ================================================================================
- [10:19:35][#11546698][0270ms][0.0537]
- ================================================================================
- 开始训练迭代 #11546698
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 0.00ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 254.48ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 254.48ms
- [DEBUG] 损失: 0.0399
- [TIMING] ◀ model.train_one_iter() 耗时: 254.48ms
- [TIMING] ◀ 训练迭代总时间 耗时: 254.48ms
- 迭代 #11546699 完成,耗时: 254.48ms
- ================================================================================
- [10:19:35][#11546699][0254ms][0.0399]
- ================================================================================
- 开始训练迭代 #11546699
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 15.79ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 254.06ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 254.06ms
- [DEBUG] 损失: 0.0206
- [TIMING] ◀ model.train_one_iter() 耗时: 269.85ms
- [TIMING] ◀ 训练迭代总时间 耗时: 269.85ms
- 迭代 #11546700 完成,耗时: 269.85ms
- ================================================================================
- [10:19:35][#11546700][0269ms][0.0206]
- ================================================================================
- 开始训练迭代 #11546700
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 0.00ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 268.98ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 268.98ms
- [DEBUG] 损失: 0.0304
- [TIMING] ◀ model.train_one_iter() 耗时: 268.98ms
- [TIMING] ◀ 训练迭代总时间 耗时: 268.98ms
- 迭代 #11546701 完成,耗时: 268.98ms
- ================================================================================
- [10:19:35][#11546701][0268ms][0.0304]
- ================================================================================
- 开始训练迭代 #11546701
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 0.00ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 268.54ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 270.05ms
- [DEBUG] 损失: 0.0546
- [TIMING] ◀ model.train_one_iter() 耗时: 270.05ms
- [TIMING] ◀ 训练迭代总时间 耗时: 270.05ms
- 迭代 #11546702 完成,耗时: 270.05ms
- ================================================================================
- [10:19:36][#11546702][0270ms][0.0546]
- ================================================================================
- 开始训练迭代 #11546702
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 0.00ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 253.47ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 253.47ms
- [DEBUG] 损失: 0.0500
- [TIMING] ◀ model.train_one_iter() 耗时: 253.47ms
- [TIMING] ◀ 训练迭代总时间 耗时: 253.47ms
- 迭代 #11546703 完成,耗时: 253.47ms
- ================================================================================
- [10:19:36][#11546703][0253ms][0.0500]
- ================================================================================
- 开始训练迭代 #11546703
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 18.34ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 251.91ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 251.91ms
- [DEBUG] 损失: 0.0154
- [TIMING] ◀ model.train_one_iter() 耗时: 270.25ms
- [TIMING] ◀ 训练迭代总时间 耗时: 270.25ms
- 迭代 #11546704 完成,耗时: 270.25ms
- ================================================================================
- [10:19:36][#11546704][0270ms][0.0154]
- ================================================================================
- 开始训练迭代 #11546704
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 0.00ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 267.56ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 267.56ms
- [DEBUG] 损失: 0.0186
- [TIMING] ◀ model.train_one_iter() 耗时: 267.56ms
- [TIMING] ◀ 训练迭代总时间 耗时: 267.56ms
- 迭代 #11546705 完成,耗时: 267.56ms
- ================================================================================
- [10:19:37][#11546705][0267ms][0.0186]
- ================================================================================
- 开始训练迭代 #11546705
- ================================================================================
- [TIMING] ▶ 训练迭代总时间
- [TIMING] ▶ model.train_one_iter()
- [DEBUG] onTrainOneIter 开始
- [TIMING] ▶ generate_next_samples()
- [TIMING] ◀ generate_next_samples() 耗时: 7.88ms
- [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
- [TIMING] ▶ train()
- [DEBUG] train() 开始
- [DEBUG] input_np.shape: (4, 3, 256, 256)
- [DEBUG] target_np.shape: (4, 1, 256, 256)
- [TIMING] ▶ 准备 feed_dict
- [TIMING] ◀ 准备 feed_dict 耗时: 0.00ms
- [DEBUG] feed_dict 准备完成
- [TIMING] ▶ nn.tf_sess.run([loss, loss_gv_op])
- [TIMING] ◀ nn.tf_sess.run([loss, loss_gv_op]) 耗时: 247.75ms
- [DEBUG] train() 完成
- [TIMING] ◀ train() 耗时: 247.75ms
- [DEBUG] 损失: 0.0294
- [TIMING] ◀ model.train_one_iter() 耗时: 255.63ms
- [TIMING] ◀ 训练迭代总时间 耗时: 255.63ms
- 迭代 #11546706 完成,耗时: 255.63ms
- ================================================================================
复制代码
|
|