deepfacelab中文网

 找回密码
 立即注册(仅限QQ邮箱)
查看: 67|回复: 0

遮罩训练加载全过程耗时

[复制链接]

25

主题

170

帖子

1186

积分

初级丹圣

Rank: 8Rank: 8

积分
1186
 楼主| 发表于 昨天 10:25 | 显示全部楼层 |阅读模式
星级打分
  • 1
  • 2
  • 3
  • 4
  • 5
平均分:NAN  参与人数:0  我的评分:未评
  1. [DEBUG]   nn.tf_sess is None,需要创建新 session
  2. [TIMING] ▶   创建 TensorFlow session
  3. [TIMING] ◀   创建 TensorFlow session 耗时: 526.51ms
  4. Press enter in 2 seconds to override model settings.[DEBUG]   nn.tf_sess 已存在,重用现有 session
  5. [DEBUG]   nn.tf_sess 已存在,重用现有 session
  6. [TIMING] ▶   构建 XSeg 模型
  7. [TIMING] ◀   构建 XSeg 模型 耗时: 0.00ms
  8. [TIMING] ▶   获取模型权重
  9. [TIMING] ◀   获取模型权重 耗时: 477.68ms
  10. [TIMING] ▶   初始化优化器
  11. [TIMING] ◀   初始化优化器 耗时: 858.79ms
  12. [TIMING] ▶   加载/初始化权重
  13. [DEBUG]   尝试加载权重: D:\AI\Deepfacelab30\workspace\model\XSeg_256_opt.npy
  14. [DEBUG] load_weights(D:\AI\Deepfacelab30\workspace\model\XSeg_256_opt.npy) 开始
  15. [TIMING] ▶   读取权重文件
  16. [TIMING] ◀   读取权重文件 耗时: 475.26ms
  17. [TIMING] ▶   准备权重 tuples
  18. [TIMING] ◀   准备权重 tuples 耗时: 0.00ms
  19. [TIMING] ▶   batch_set_value
  20. [DEBUG] batch_set_value() 开始,tuples 数量: 223
  21. [TIMING] ▶   创建 assign_ops
  22. [TIMING] ◀   创建 assign_ops 耗时: 149.95ms
  23. [TIMING] ▶   nn.tf_sess.run(assign_ops)
  24. [TIMING] ◀   nn.tf_sess.run(assign_ops) 耗时: 280.37ms
  25. [DEBUG] batch_set_value() 完成
  26. [TIMING] ◀   batch_set_value 耗时: 430.32ms
  27. [DEBUG] load_weights() 完成
  28. [DEBUG]   尝试加载权重: D:\AI\Deepfacelab30\workspace\model\XSeg_256.npy
  29. [DEBUG] load_weights(D:\AI\Deepfacelab30\workspace\model\XSeg_256.npy) 开始
  30. [TIMING] ▶   读取权重文件
  31. [TIMING] ◀   读取权重文件 耗时: 670.27ms
  32. [TIMING] ▶   准备权重 tuples
  33. [TIMING] ◀   准备权重 tuples 耗时: 0.00ms
  34. [TIMING] ▶   batch_set_value
  35. [DEBUG] batch_set_value() 开始,tuples 数量: 222
  36. [TIMING] ▶   创建 assign_ops
  37. [TIMING] ◀   创建 assign_ops 耗时: 143.68ms
  38. [TIMING] ▶   nn.tf_sess.run(assign_ops)
  39. [TIMING] ◀   nn.tf_sess.run(assign_ops) 耗时: 271.30ms
  40. [DEBUG] batch_set_value() 完成
  41. [TIMING] ◀   batch_set_value 耗时: 414.97ms
  42. [DEBUG] load_weights() 完成
  43. [TIMING] ◀   加载/初始化权重 耗时: 1990.82ms
  44. [DEBUG] XSegNet.__init__() 完成
  45. [DEBUG] XSegNet.__init__() 开始
  46. [DEBUG] XSegNet.__init__() 开始
  47. [DEBUG] XSegNet.__init__() 开始
  48. [DEBUG] XSegNet.__init__() 开始
  49. [DEBUG] XSegNet.__init__() 开始
  50. [DEBUG] XSegNet.__init__() 开始
  51. [DEBUG] XSegNet.__init__() 开始
  52. [DEBUG] XSegNet.__init__() 开始
  53. Loading samples: 0it [00:00, ?it/s]
  54. [DEBUG] XSegNet.__init__() 开始
  55. [DEBUG] XSegNet.__init__() 开始
  56. [DEBUG] XSegNet.__init__() 开始
  57. [DEBUG] XSegNet.__init__() 开始
  58. [DEBUG] XSegNet.__init__() 开始
  59. [DEBUG] XSegNet.__init__() 开始
  60. [DEBUG] XSegNet.__init__() 开始
  61. [DEBUG] XSegNet.__init__() 开始
  62. Loading samples: 100%|############################################################| 2069/2069 [00:10<00:00, 192.56it/s]
  63. [DEBUG] XSegNet.__init__() 开始
  64. [DEBUG] XSegNet.__init__() 开始
  65. [DEBUG] XSegNet.__init__() 开始
  66. [DEBUG] XSegNet.__init__() 开始
  67. [DEBUG] XSegNet.__init__() 开始
  68. [DEBUG] XSegNet.__init__() 开始
  69. [DEBUG] XSegNet.__init__() 开始
  70. [DEBUG] XSegNet.__init__() 开始
  71. Filtering: 100%|##################################################################| 2069/2069 [00:04<00:00, 491.57it/s]
  72. Using 11 segmented samples.
  73. [DEBUG] XSegNet.__init__() 开始
  74. [DEBUG] XSegNet.__init__() 开始
  75. [DEBUG] XSegNet.__init__() 开始
  76. [DEBUG] XSegNet.__init__() 开始
  77. [DEBUG] XSegNet.__init__() 开始
  78. [DEBUG] XSegNet.__init__() 开始
  79. [DEBUG] XSegNet.__init__() 开始
  80. [DEBUG] XSegNet.__init__() 开始
  81. ================ Model Summary =================
  82. ==                                            ==
  83. ==        Model name: XSeg                    ==
  84. ==                                            ==
  85. == Current iteration: 11546686                ==
  86. ==                                            ==
  87. ==-------------- Model Options ---------------==
  88. ==                                            ==
  89. ==         face_type: wf                      ==
  90. ==        batch_size: 4                       ==
  91. ==          pretrain: False                   ==
  92. ==                                            ==
  93. ==---------------- Running On ----------------==
  94. ==                                            ==
  95. ==      Device index: 0                       ==
  96. ==              Name: NVIDIA GeForce RTX 3050 ==
  97. ==              VRAM: 3.43GB                  ==
  98. ==                                            ==
  99. ================================================
  100. Starting. Press "Enter" to stop training and save model.

  101. ================================================================================
  102. 开始训练迭代 #11546686
  103. ================================================================================
  104. [TIMING] ▶ 训练迭代总时间
  105. [TIMING] ▶   model.train_one_iter()
  106. [DEBUG] onTrainOneIter 开始
  107. [TIMING] ▶   generate_next_samples()
  108. [TIMING] ◀   generate_next_samples() 耗时: 20.02ms
  109. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  110. [TIMING] ▶   train()
  111. [DEBUG] train() 开始
  112. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  113. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  114. [TIMING] ▶     准备 feed_dict
  115. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  116. [DEBUG] feed_dict 准备完成
  117. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  118. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 5474.69ms
  119. [DEBUG] train() 完成
  120. [TIMING] ◀   train() 耗时: 5474.69ms
  121. [DEBUG] 损失: 0.0209
  122. [TIMING] ◀   model.train_one_iter() 耗时: 5494.71ms
  123. [TIMING] ◀ 训练迭代总时间 耗时: 5494.71ms
  124. 迭代 #11546687 完成,耗时: 5494.71ms
  125. ================================================================================

  126. [10:19:26][#11546687][5494ms][0.0209]
  127. ================================================================================
  128. 开始训练迭代 #11546687
  129. ================================================================================
  130. [TIMING] ▶ 训练迭代总时间
  131. [TIMING] ▶   model.train_one_iter()
  132. [DEBUG] onTrainOneIter 开始
  133. [TIMING] ▶   generate_next_samples()
  134. [TIMING] ◀   generate_next_samples() 耗时: 15.90ms
  135. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  136. [TIMING] ▶   train()
  137. [DEBUG] train() 开始
  138. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  139. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  140. [TIMING] ▶     准备 feed_dict
  141. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  142. [DEBUG] feed_dict 准备完成
  143. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  144. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 2290.56ms
  145. [DEBUG] train() 完成
  146. [TIMING] ◀   train() 耗时: 2290.56ms
  147. [DEBUG] 损失: 0.0188
  148. [TIMING] ◀   model.train_one_iter() 耗时: 2322.21ms
  149. [TIMING] ◀ 训练迭代总时间 耗时: 2337.98ms
  150. 迭代 #11546688 完成,耗时: 2322.21ms
  151. ================================================================================

  152. [10:19:29][#11546688][2322ms][0.0188]
  153. ================================================================================
  154. 开始训练迭代 #11546688
  155. ================================================================================
  156. [TIMING] ▶ 训练迭代总时间
  157. [TIMING] ▶   model.train_one_iter()
  158. [DEBUG] onTrainOneIter 开始
  159. [TIMING] ▶   generate_next_samples()
  160. [TIMING] ◀   generate_next_samples() 耗时: 143.49ms
  161. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  162. [TIMING] ▶   train()
  163. [DEBUG] train() 开始
  164. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  165. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  166. [TIMING] ▶     准备 feed_dict
  167. [TIMING] ◀     准备 feed_dict 耗时: 31.82ms
  168. [DEBUG] feed_dict 准备完成
  169. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  170. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 493.01ms
  171. [DEBUG] train() 完成
  172. [TIMING] ◀   train() 耗时: 668.24ms
  173. [DEBUG] 损失: 0.0179
  174. [TIMING] ◀   model.train_one_iter() 耗时: 907.09ms
  175. [TIMING] ◀ 训练迭代总时间 耗时: 954.32ms
  176. 迭代 #11546689 完成,耗时: 891.84ms
  177. ================================================================================

  178. [10:19:30][#11546689][0891ms][0.0179]
  179. ================================================================================
  180. 开始训练迭代 #11546689
  181. ================================================================================
  182. [TIMING] ▶ 训练迭代总时间
  183. [TIMING] ▶   model.train_one_iter()
  184. [DEBUG] onTrainOneIter 开始
  185. [TIMING] ▶   generate_next_samples()
  186. [TIMING] ◀   generate_next_samples() 耗时: 173.48ms
  187. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  188. [TIMING] ▶   train()
  189. [DEBUG] train() 开始
  190. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  191. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  192. [TIMING] ▶     准备 feed_dict
  193. [TIMING] ◀     准备 feed_dict 耗时: 47.86ms
  194. [DEBUG] feed_dict 准备完成
  195. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  196. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 284.63ms
  197. [DEBUG] train() 完成
  198. [TIMING] ◀   train() 耗时: 523.61ms
  199. [DEBUG] 损失: 0.0260
  200. [TIMING] ◀   model.train_one_iter() 耗时: 840.03ms
  201. [TIMING] ◀ 训练迭代总时间 耗时: 871.75ms
  202. 迭代 #11546690 完成,耗时: 808.24ms
  203. ================================================================================

  204. [10:19:31][#11546690][0808ms][0.0260]
  205. ================================================================================
  206. 开始训练迭代 #11546690
  207. ================================================================================
  208. [TIMING] ▶ 训练迭代总时间
  209. [TIMING] ▶   model.train_one_iter()
  210. [DEBUG] onTrainOneIter 开始
  211. [TIMING] ▶   generate_next_samples()
  212. [TIMING] ◀   generate_next_samples() 耗时: 47.40ms
  213. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  214. [TIMING] ▶   train()
  215. [DEBUG] train() 开始
  216. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  217. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  218. [TIMING] ▶     准备 feed_dict
  219. [TIMING] ◀     准备 feed_dict 耗时: 15.69ms
  220. [DEBUG] feed_dict 准备完成
  221. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  222. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 286.07ms
  223. [DEBUG] train() 完成
  224. [TIMING] ◀   train() 耗时: 396.81ms
  225. [DEBUG] 损失: 0.1187
  226. [TIMING] ◀   model.train_one_iter() 耗时: 540.12ms
  227. [TIMING] ◀ 训练迭代总时间 耗时: 572.00ms
  228. 迭代 #11546691 完成,耗时: 523.99ms
  229. ================================================================================

  230. [10:19:32][#11546691][0523ms][0.1187]
  231. ================================================================================
  232. 开始训练迭代 #11546691
  233. ================================================================================
  234. [TIMING] ▶ 训练迭代总时间
  235. [TIMING] ▶   model.train_one_iter()
  236. [DEBUG] onTrainOneIter 开始
  237. [TIMING] ▶   generate_next_samples()
  238. [TIMING] ◀   generate_next_samples() 耗时: 47.78ms
  239. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  240. [TIMING] ▶   train()
  241. [DEBUG] train() 开始
  242. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  243. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  244. [TIMING] ▶     准备 feed_dict
  245. [TIMING] ◀     准备 feed_dict 耗时: 16.16ms
  246. [DEBUG] feed_dict 准备完成
  247. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  248. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 285.10ms
  249. [DEBUG] train() 完成
  250. [TIMING] ◀   train() 耗时: 459.45ms
  251. [DEBUG] 损失: 0.0194
  252. [TIMING] ◀   model.train_one_iter() 耗时: 602.22ms
  253. [TIMING] ◀ 训练迭代总时间 耗时: 617.99ms
  254. 迭代 #11546692 完成,耗时: 586.14ms
  255. ================================================================================

  256. [10:19:33][#11546692][0586ms][0.0194]
  257. ================================================================================
  258. 开始训练迭代 #11546692
  259. ================================================================================
  260. [TIMING] ▶ 训练迭代总时间
  261. [TIMING] ▶   model.train_one_iter()
  262. [DEBUG] onTrainOneIter 开始
  263. [TIMING] ▶   generate_next_samples()
  264. [TIMING] ◀   generate_next_samples() 耗时: 95.40ms
  265. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  266. [TIMING] ▶   train()
  267. [DEBUG] train() 开始
  268. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  269. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  270. [TIMING] ▶     准备 feed_dict
  271. [TIMING] ◀     准备 feed_dict 耗时: 16.07ms
  272. [DEBUG] feed_dict 准备完成
  273. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  274. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 280.33ms
  275. [DEBUG] train() 完成
  276. [TIMING] ◀   train() 耗时: 533.54ms
  277. [DEBUG] 损失: 0.0447
  278. [TIMING] ◀   model.train_one_iter() 耗时: 692.93ms
  279. [TIMING] ◀ 训练迭代总时间 耗时: 709.09ms
  280. 迭代 #11546693 完成,耗时: 677.12ms
  281. ================================================================================

  282. [10:19:33][#11546693][0677ms][0.0447]
  283. ================================================================================
  284. 开始训练迭代 #11546693
  285. ================================================================================
  286. [TIMING] ▶ 训练迭代总时间
  287. [TIMING] ▶   model.train_one_iter()
  288. [DEBUG] onTrainOneIter 开始
  289. [TIMING] ▶   generate_next_samples()
  290. [TIMING] ◀   generate_next_samples() 耗时: 9.50ms
  291. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  292. [TIMING] ▶   train()
  293. [DEBUG] train() 开始
  294. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  295. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  296. [TIMING] ▶     准备 feed_dict
  297. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  298. [DEBUG] feed_dict 准备完成
  299. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  300. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 248.04ms
  301. [DEBUG] train() 完成
  302. [TIMING] ◀   train() 耗时: 248.04ms
  303. [DEBUG] 损失: 0.0182
  304. [TIMING] ◀   model.train_one_iter() 耗时: 273.63ms
  305. [TIMING] ◀ 训练迭代总时间 耗时: 273.63ms
  306. 迭代 #11546694 完成,耗时: 273.63ms
  307. ================================================================================

  308. [10:19:34][#11546694][0273ms][0.0182]
  309. ================================================================================
  310. 开始训练迭代 #11546694
  311. ================================================================================
  312. [TIMING] ▶ 训练迭代总时间
  313. [TIMING] ▶   model.train_one_iter()
  314. [DEBUG] onTrainOneIter 开始
  315. [TIMING] ▶   generate_next_samples()
  316. [TIMING] ◀   generate_next_samples() 耗时: 0.00ms
  317. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  318. [TIMING] ▶   train()
  319. [DEBUG] train() 开始
  320. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  321. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  322. [TIMING] ▶     准备 feed_dict
  323. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  324. [DEBUG] feed_dict 准备完成
  325. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  326. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 253.41ms
  327. [DEBUG] train() 完成
  328. [TIMING] ◀   train() 耗时: 253.41ms
  329. [DEBUG] 损失: 0.0754
  330. [TIMING] ◀   model.train_one_iter() 耗时: 253.41ms
  331. [TIMING] ◀ 训练迭代总时间 耗时: 253.41ms
  332. 迭代 #11546695 完成,耗时: 253.41ms
  333. ================================================================================

  334. [10:19:34][#11546695][0253ms][0.0754]
  335. ================================================================================
  336. 开始训练迭代 #11546695
  337. ================================================================================
  338. [TIMING] ▶ 训练迭代总时间
  339. [TIMING] ▶   model.train_one_iter()
  340. [DEBUG] onTrainOneIter 开始
  341. [TIMING] ▶   generate_next_samples()
  342. [TIMING] ◀   generate_next_samples() 耗时: 15.69ms
  343. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  344. [TIMING] ▶   train()
  345. [DEBUG] train() 开始
  346. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  347. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  348. [TIMING] ▶     准备 feed_dict
  349. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  350. [DEBUG] feed_dict 准备完成
  351. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  352. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 253.66ms
  353. [DEBUG] train() 完成
  354. [TIMING] ◀   train() 耗时: 253.66ms
  355. [DEBUG] 损失: 0.0190
  356. [TIMING] ◀   model.train_one_iter() 耗时: 269.35ms
  357. [TIMING] ◀ 训练迭代总时间 耗时: 269.35ms
  358. 迭代 #11546696 完成,耗时: 269.35ms
  359. ================================================================================

  360. [10:19:34][#11546696][0269ms][0.0190]
  361. ================================================================================
  362. 开始训练迭代 #11546696
  363. ================================================================================
  364. [TIMING] ▶ 训练迭代总时间
  365. [TIMING] ▶   model.train_one_iter()
  366. [DEBUG] onTrainOneIter 开始
  367. [TIMING] ▶   generate_next_samples()
  368. [TIMING] ◀   generate_next_samples() 耗时: 16.11ms
  369. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  370. [TIMING] ▶   train()
  371. [DEBUG] train() 开始
  372. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  373. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  374. [TIMING] ▶     准备 feed_dict
  375. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  376. [DEBUG] feed_dict 准备完成
  377. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  378. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 254.67ms
  379. [DEBUG] train() 完成
  380. [TIMING] ◀   train() 耗时: 254.67ms
  381. [DEBUG] 损失: 0.0185
  382. [TIMING] ◀   model.train_one_iter() 耗时: 270.78ms
  383. [TIMING] ◀ 训练迭代总时间 耗时: 270.78ms
  384. 迭代 #11546697 完成,耗时: 270.78ms
  385. ================================================================================

  386. [10:19:34][#11546697][0270ms][0.0185]
  387. ================================================================================
  388. 开始训练迭代 #11546697
  389. ================================================================================
  390. [TIMING] ▶ 训练迭代总时间
  391. [TIMING] ▶   model.train_one_iter()
  392. [DEBUG] onTrainOneIter 开始
  393. [TIMING] ▶   generate_next_samples()
  394. [TIMING] ◀   generate_next_samples() 耗时: 17.64ms
  395. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  396. [TIMING] ▶   train()
  397. [DEBUG] train() 开始
  398. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  399. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  400. [TIMING] ▶     准备 feed_dict
  401. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  402. [DEBUG] feed_dict 准备完成
  403. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  404. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 252.90ms
  405. [DEBUG] train() 完成
  406. [TIMING] ◀   train() 耗时: 252.90ms
  407. [DEBUG] 损失: 0.0537
  408. [TIMING] ◀   model.train_one_iter() 耗时: 270.55ms
  409. [TIMING] ◀ 训练迭代总时间 耗时: 270.55ms
  410. 迭代 #11546698 完成,耗时: 270.55ms
  411. ================================================================================

  412. [10:19:35][#11546698][0270ms][0.0537]
  413. ================================================================================
  414. 开始训练迭代 #11546698
  415. ================================================================================
  416. [TIMING] ▶ 训练迭代总时间
  417. [TIMING] ▶   model.train_one_iter()
  418. [DEBUG] onTrainOneIter 开始
  419. [TIMING] ▶   generate_next_samples()
  420. [TIMING] ◀   generate_next_samples() 耗时: 0.00ms
  421. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  422. [TIMING] ▶   train()
  423. [DEBUG] train() 开始
  424. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  425. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  426. [TIMING] ▶     准备 feed_dict
  427. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  428. [DEBUG] feed_dict 准备完成
  429. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  430. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 254.48ms
  431. [DEBUG] train() 完成
  432. [TIMING] ◀   train() 耗时: 254.48ms
  433. [DEBUG] 损失: 0.0399
  434. [TIMING] ◀   model.train_one_iter() 耗时: 254.48ms
  435. [TIMING] ◀ 训练迭代总时间 耗时: 254.48ms
  436. 迭代 #11546699 完成,耗时: 254.48ms
  437. ================================================================================

  438. [10:19:35][#11546699][0254ms][0.0399]
  439. ================================================================================
  440. 开始训练迭代 #11546699
  441. ================================================================================
  442. [TIMING] ▶ 训练迭代总时间
  443. [TIMING] ▶   model.train_one_iter()
  444. [DEBUG] onTrainOneIter 开始
  445. [TIMING] ▶   generate_next_samples()
  446. [TIMING] ◀   generate_next_samples() 耗时: 15.79ms
  447. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  448. [TIMING] ▶   train()
  449. [DEBUG] train() 开始
  450. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  451. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  452. [TIMING] ▶     准备 feed_dict
  453. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  454. [DEBUG] feed_dict 准备完成
  455. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  456. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 254.06ms
  457. [DEBUG] train() 完成
  458. [TIMING] ◀   train() 耗时: 254.06ms
  459. [DEBUG] 损失: 0.0206
  460. [TIMING] ◀   model.train_one_iter() 耗时: 269.85ms
  461. [TIMING] ◀ 训练迭代总时间 耗时: 269.85ms
  462. 迭代 #11546700 完成,耗时: 269.85ms
  463. ================================================================================

  464. [10:19:35][#11546700][0269ms][0.0206]
  465. ================================================================================
  466. 开始训练迭代 #11546700
  467. ================================================================================
  468. [TIMING] ▶ 训练迭代总时间
  469. [TIMING] ▶   model.train_one_iter()
  470. [DEBUG] onTrainOneIter 开始
  471. [TIMING] ▶   generate_next_samples()
  472. [TIMING] ◀   generate_next_samples() 耗时: 0.00ms
  473. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  474. [TIMING] ▶   train()
  475. [DEBUG] train() 开始
  476. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  477. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  478. [TIMING] ▶     准备 feed_dict
  479. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  480. [DEBUG] feed_dict 准备完成
  481. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  482. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 268.98ms
  483. [DEBUG] train() 完成
  484. [TIMING] ◀   train() 耗时: 268.98ms
  485. [DEBUG] 损失: 0.0304
  486. [TIMING] ◀   model.train_one_iter() 耗时: 268.98ms
  487. [TIMING] ◀ 训练迭代总时间 耗时: 268.98ms
  488. 迭代 #11546701 完成,耗时: 268.98ms
  489. ================================================================================

  490. [10:19:35][#11546701][0268ms][0.0304]
  491. ================================================================================
  492. 开始训练迭代 #11546701
  493. ================================================================================
  494. [TIMING] ▶ 训练迭代总时间
  495. [TIMING] ▶   model.train_one_iter()
  496. [DEBUG] onTrainOneIter 开始
  497. [TIMING] ▶   generate_next_samples()
  498. [TIMING] ◀   generate_next_samples() 耗时: 0.00ms
  499. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  500. [TIMING] ▶   train()
  501. [DEBUG] train() 开始
  502. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  503. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  504. [TIMING] ▶     准备 feed_dict
  505. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  506. [DEBUG] feed_dict 准备完成
  507. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  508. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 268.54ms
  509. [DEBUG] train() 完成
  510. [TIMING] ◀   train() 耗时: 270.05ms
  511. [DEBUG] 损失: 0.0546
  512. [TIMING] ◀   model.train_one_iter() 耗时: 270.05ms
  513. [TIMING] ◀ 训练迭代总时间 耗时: 270.05ms
  514. 迭代 #11546702 完成,耗时: 270.05ms
  515. ================================================================================

  516. [10:19:36][#11546702][0270ms][0.0546]
  517. ================================================================================
  518. 开始训练迭代 #11546702
  519. ================================================================================
  520. [TIMING] ▶ 训练迭代总时间
  521. [TIMING] ▶   model.train_one_iter()
  522. [DEBUG] onTrainOneIter 开始
  523. [TIMING] ▶   generate_next_samples()
  524. [TIMING] ◀   generate_next_samples() 耗时: 0.00ms
  525. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  526. [TIMING] ▶   train()
  527. [DEBUG] train() 开始
  528. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  529. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  530. [TIMING] ▶     准备 feed_dict
  531. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  532. [DEBUG] feed_dict 准备完成
  533. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  534. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 253.47ms
  535. [DEBUG] train() 完成
  536. [TIMING] ◀   train() 耗时: 253.47ms
  537. [DEBUG] 损失: 0.0500
  538. [TIMING] ◀   model.train_one_iter() 耗时: 253.47ms
  539. [TIMING] ◀ 训练迭代总时间 耗时: 253.47ms
  540. 迭代 #11546703 完成,耗时: 253.47ms
  541. ================================================================================

  542. [10:19:36][#11546703][0253ms][0.0500]
  543. ================================================================================
  544. 开始训练迭代 #11546703
  545. ================================================================================
  546. [TIMING] ▶ 训练迭代总时间
  547. [TIMING] ▶   model.train_one_iter()
  548. [DEBUG] onTrainOneIter 开始
  549. [TIMING] ▶   generate_next_samples()
  550. [TIMING] ◀   generate_next_samples() 耗时: 18.34ms
  551. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  552. [TIMING] ▶   train()
  553. [DEBUG] train() 开始
  554. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  555. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  556. [TIMING] ▶     准备 feed_dict
  557. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  558. [DEBUG] feed_dict 准备完成
  559. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  560. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 251.91ms
  561. [DEBUG] train() 完成
  562. [TIMING] ◀   train() 耗时: 251.91ms
  563. [DEBUG] 损失: 0.0154
  564. [TIMING] ◀   model.train_one_iter() 耗时: 270.25ms
  565. [TIMING] ◀ 训练迭代总时间 耗时: 270.25ms
  566. 迭代 #11546704 完成,耗时: 270.25ms
  567. ================================================================================

  568. [10:19:36][#11546704][0270ms][0.0154]
  569. ================================================================================
  570. 开始训练迭代 #11546704
  571. ================================================================================
  572. [TIMING] ▶ 训练迭代总时间
  573. [TIMING] ▶   model.train_one_iter()
  574. [DEBUG] onTrainOneIter 开始
  575. [TIMING] ▶   generate_next_samples()
  576. [TIMING] ◀   generate_next_samples() 耗时: 0.00ms
  577. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  578. [TIMING] ▶   train()
  579. [DEBUG] train() 开始
  580. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  581. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  582. [TIMING] ▶     准备 feed_dict
  583. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  584. [DEBUG] feed_dict 准备完成
  585. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  586. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 267.56ms
  587. [DEBUG] train() 完成
  588. [TIMING] ◀   train() 耗时: 267.56ms
  589. [DEBUG] 损失: 0.0186
  590. [TIMING] ◀   model.train_one_iter() 耗时: 267.56ms
  591. [TIMING] ◀ 训练迭代总时间 耗时: 267.56ms
  592. 迭代 #11546705 完成,耗时: 267.56ms
  593. ================================================================================

  594. [10:19:37][#11546705][0267ms][0.0186]
  595. ================================================================================
  596. 开始训练迭代 #11546705
  597. ================================================================================
  598. [TIMING] ▶ 训练迭代总时间
  599. [TIMING] ▶   model.train_one_iter()
  600. [DEBUG] onTrainOneIter 开始
  601. [TIMING] ▶   generate_next_samples()
  602. [TIMING] ◀   generate_next_samples() 耗时: 7.88ms
  603. [DEBUG] 输入数据形状: (4, 3, 256, 256), (4, 1, 256, 256)
  604. [TIMING] ▶   train()
  605. [DEBUG] train() 开始
  606. [DEBUG]   input_np.shape: (4, 3, 256, 256)
  607. [DEBUG]   target_np.shape: (4, 1, 256, 256)
  608. [TIMING] ▶     准备 feed_dict
  609. [TIMING] ◀     准备 feed_dict 耗时: 0.00ms
  610. [DEBUG] feed_dict 准备完成
  611. [TIMING] ▶     nn.tf_sess.run([loss, loss_gv_op])
  612. [TIMING] ◀     nn.tf_sess.run([loss, loss_gv_op]) 耗时: 247.75ms
  613. [DEBUG] train() 完成
  614. [TIMING] ◀   train() 耗时: 247.75ms
  615. [DEBUG] 损失: 0.0294
  616. [TIMING] ◀   model.train_one_iter() 耗时: 255.63ms
  617. [TIMING] ◀ 训练迭代总时间 耗时: 255.63ms
  618. 迭代 #11546706 完成,耗时: 255.63ms
  619. ================================================================================
复制代码


回复

使用道具 举报

QQ|Archiver|手机版|deepfacelab中文网 |网站地图

GMT+8, 2026-2-14 06:54 , Processed in 0.099556 second(s), 29 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表