deepfacelab中文网

 找回密码
 立即注册(仅限QQ邮箱)
查看: 1253|回复: 8

问一下提取人脸相关的问题

[复制链接]

1

主题

14

帖子

89

积分

高级丹童

Rank: 2

积分
89
发表于 2021-10-25 22:15:07 | 显示全部楼层 |阅读模式
星级打分
  • 1
  • 2
  • 3
  • 4
  • 5
平均分:NAN  参与人数:0  我的评分:未评
当我提取人脸时就会出现以下的错误,显卡3060,驱动都安装好了,cuda也安装了,以为是系统问题重装了系统还是这个样子,能帮我看看吗
Error while processing data: Traceback (most recent call last):
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1375, in _do_call
    return fn(*args)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1360, in _run_fn
    target_list, run_metadata)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1453, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
  (0) Resource exhausted: OOM when allocating tensor with shape[64,642,362] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[{{node Pad_1}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[Add_29/_4049]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

  (1) Resource exhausted: OOM when allocating tensor with shape[64,642,362] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[{{node Pad_1}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

0 successful operations.
0 derived errors ignored.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\joblib\SubprocessorBase.py", line 71, in _subprocess_run
    result = self.process_data (data)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Extractor.py", line 104, in process_data
    rects_extractor=self.rects_extractor,
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Extractor.py", line 145, in rects_stage
    rects = data.rects = rects_extractor.extract (rotated_image, is_bgr=True)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\facelib\S3FDExtractor.py", line 193, in extract
    olist = self.model.run ([ input_image[None,...] ] )
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 167, in run
    return nn.tf_sess.run ( self.run_output, feed_dict=feed_dict)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 968, in run
    run_metadata_ptr)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run
    feed_dict_tensor, options, run_metadata)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1369, in _do_run
    run_metadata)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1394, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
  (0) Resource exhausted: OOM when allocating tensor with shape[64,642,362] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Pad_1 (defined at E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[Add_29/_4049]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

  (1) Resource exhausted: OOM when allocating tensor with shape[64,642,362] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
         [[node Pad_1 (defined at E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

0 successful operations.
0 derived errors ignored.

Errors may have originated from an input operation.
Input Source operations connected to node Pad_1:
Relu (defined at E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\facelib\S3FDExtractor.py:93)

Input Source operations connected to node Pad_1:
Relu (defined at E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\facelib\S3FDExtractor.py:93)

Original stack trace for 'Pad_1':
  File "<string>", line 1, in <module>
  File "multiprocessing\spawn.py", line 105, in spawn_main
  File "multiprocessing\spawn.py", line 118, in _main
  File "multiprocessing\process.py", line 258, in _bootstrap
  File "multiprocessing\process.py", line 93, in run
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\joblib\SubprocessorBase.py", line 62, in _subprocess_run
    self.on_initialize(client_dict)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Extractor.py", line 73, in on_initialize
    self.rects_extractor = facelib.S3FDExtractor(place_model_on_cpu=place_model_on_cpu)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\facelib\S3FDExtractor.py", line 170, in __init__
    self.model.build_for_run ([ ( tf.float32, nn.get4Dshape (None,None,3) ) ])
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 154, in build_for_run
    self.run_output = self.__call__(self.run_placeholders)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__
    return self.forward(*args, **kwargs)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\facelib\S3FDExtractor.py", line 94, in forward
    x = tf.nn.relu(self.conv1_2(x))
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__
    return self.forward(*args, **kwargs)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 87, in forward
    x = tf.pad (x, padding, mode='CONSTANT')
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 201, in wrapper
    return target(*args, **kwargs)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\array_ops.py", line 3422, in pad
    result = gen_array_ops.pad(tensor, paddings, name=name)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 6484, in pad
    "Pad", input=input, paddings=paddings, name=name)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper
    attrs=attr_protos, op_def=op_def)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3536, in _create_op_internal
    op_def=op_def)
  File "E:\BaiduNetdiskDownload\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 1990, in __init__
    self._traceback = tf_stack.extract_stack()


  0%|                                                                                          | 0/655 [00:24<?, ?it/s]
-------------------------
发现的图片数量 Images found:        655
检测到面部数量 Faces detected:      0
-------------------------
Done.
请按任意键继续. . .

如果有知道怎么办的话可以帮助我一下吗,非常感谢
回复

使用道具 举报

22

主题

500

帖子

5885

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
5885
发表于 2021-10-26 00:56:29 | 显示全部楼层
2.0不是不用装CUDA了么
回复 支持 反对

使用道具 举报

1

主题

14

帖子

89

积分

高级丹童

Rank: 2

积分
89
 楼主| 发表于 2021-10-26 10:00:50 | 显示全部楼层
dreamtear 发表于 2021-10-26 00:56
2.0不是不用装CUDA了么

对,应该是不用的,但是无论装不装都无法正常运行
回复 支持 反对

使用道具 举报

7

主题

871

帖子

5808

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
5808

万事如意节日勋章

发表于 2021-10-26 10:10:21 | 显示全部楼层
虚拟内存设大点试试
回复 支持 反对

使用道具 举报

1

主题

14

帖子

89

积分

高级丹童

Rank: 2

积分
89
 楼主| 发表于 2021-10-26 12:41:41 | 显示全部楼层
lknet 发表于 2021-10-26 10:10
虚拟内存设大点试试

我设置成5g,大概多少合适,我感觉不太像是虚拟内存的问题,每次我提取人脸的时候我桌面的其他应用也会崩溃
回复 支持 反对

使用道具 举报

7

主题

871

帖子

5808

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
5808

万事如意节日勋章

发表于 2021-10-26 14:27:46 | 显示全部楼层
Double2and9 发表于 2021-10-26 12:41
我设置成5g,大概多少合适,我感觉不太像是虚拟内存的问题,每次我提取人脸的时候我桌面的其他应用也会崩 ...

50-100G,这东西对虚拟内存有点诡异,没怎么用过,但是少了就是会报错.只管试试吧,反正又不损失啥.
回复 支持 反对

使用道具 举报

1

主题

14

帖子

89

积分

高级丹童

Rank: 2

积分
89
 楼主| 发表于 2021-10-26 22:50:50 | 显示全部楼层
lknet 发表于 2021-10-26 14:27
50-100G,这东西对虚拟内存有点诡异,没怎么用过,但是少了就是会报错.只管试试吧,反正又不损失啥. ...

试了,虽然没有解决,但是感谢你的回复
回复 支持 反对

使用道具 举报

1

主题

14

帖子

89

积分

高级丹童

Rank: 2

积分
89
 楼主| 发表于 2021-10-26 22:51:27 | 显示全部楼层
还有大佬能帮我看看吗
回复 支持 反对

使用道具 举报

10

主题

471

帖子

3548

积分

高级丹圣

Rank: 13Rank: 13Rank: 13Rank: 13

积分
3548
发表于 2021-10-27 09:17:23 | 显示全部楼层


你这个错误写的是显存溢出了,说明你显卡的显存甚至都不够你当前的程序使用。
先确定你的是什么显卡?一般哪怕旧些的显卡都不太可能出现这个显存溢出的问题。
确定显卡没问题后,看看你下的软件版本是否正确?
软件版本正确的话看看虚拟内存是否足够,虽然上面有人说了调大到50-100G, 但是你还是再次确认下是否已经设置成功了?
因为虚拟内存改完后,还要按一下那个设置按钮,很多人都不知道,或者忘记了。
如果做完以上步骤还是不行,那就进群问问。
回复 支持 反对

使用道具 举报

QQ|Archiver|手机版|deepfacelab中文网 |网站地图

GMT+8, 2024-11-28 18:46 , Processed in 0.132676 second(s), 33 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表